
Asymptotic Bethe ansatz S-matrix and Landau–Lifshitz-type effective 2d actions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2006 J. Phys. A: Math. Gen. 39 13129

(http://iopscience.iop.org/0305-4470/39/41/S19)

Download details:

IP Address: 171.66.16.106

The article was downloaded on 03/06/2010 at 04:53

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/39/41
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 39 (2006) 13129–13169 doi:10.1088/0305-4470/39/41/S19

Asymptotic Bethe ansatz S-matrix and
Landau–Lifshitz-type effective 2d actions

R Roiban1, A Tirziu2 and A A Tseytlin2,3,4

1 Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA
2 Department of Physics, The Ohio State University, Columbus, OH 43210, USA
3 Blackett Laboratory, Imperial College, London SW7 2AZ, UK

E-mail: radu@phys.psu.edu and tirziu@mps.ohio-state.edu

Received 15 May 2006
Published 27 September 2006
Online at stacks.iop.org/JPhysA/39/13129

Abstract
Motivated by the desire to relate Bethe ansatz equations for anomalous
dimensions found on the gauge-theory side of the AdS/CFT correspondence
to superstring theory on AdS5 × S5 we explore a connection between the
asymptotic S-matrix that enters the Bethe ansatz and an effective two-
dimensional quantum field theory. The latter generalizes the standard ‘non-
relativistic’ Landau–Lifshitz (LL) model describing low-energy modes of
ferromagnetic Heisenberg spin chain and should be related to a limit of
superstring effective action. We find the exact form of the quartic interaction
terms in the generalized LL-type action whose quantum S-matrix matches the
low-energy limit of the asymptotic S-matrix of the spin chain of Beisert, Dippel
and Staudacher (BDS). This generalizes to all orders in the ‘t Hooft coupling
λ an earlier computation of Klose and Zarembo of the S-matrix of the standard
LL model. We also consider a generalization to the case when the spin-chain
S-matrix contains an extra ‘string’ phase and determine the exact form of
the LL 4-vertex corresponding to the low-energy limit of the ansatz of
Arutyunov, Frolov and Staudacher (AFS). We explain the relation between
the resulting ‘non-relativistic’ non-local action and the second-derivative string
sigma model. We comment on modifications introduced by strong-coupling
corrections to the AFS phase. We mostly discuss the SU(2) sector but
also present generalizations to the SL(2) and SU(1|1) sectors, confirming
universality of the dressing phase contribution by matching the low-energy limit
of the AFS-type spin-chain S-matrix with tree-level string-theory S-matrix.
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1. Introduction

To demonstrate the AdS/CFT duality one is to establish a direct relation between the spectrum
of the N = 4 SYM gauge-theory dilatation operator and the spectrum of quantum string
energies in AdS5 × S5. There are strong indications that both spectra are described by
solutions of certain spin-chain-type Bethe ansatz. In the simplest bosonic sector of the gauge
theory, the SU(2) sector, the spin chain is a long-range extension of the ferromagnetic XXX1/2

model [1–5]. Its Hamiltonian is known explicitly up to three loops; beyond this order the spin
chain is defined by the Bethe ansatz [3–6]

eipkL =
M∏

j �=k

S(pk, pj ; λ), (1.1)

S(pk, pj ; λ) = S1(pk, pj ; λ) eiθ(pk,pj ;λ), S1 = uk − uj + i

uk − uj − i
. (1.2)

Here pj (j = 1, . . . , M) are momenta of excitations which at one loop reduce to those
diagonalizing the XXX1/2 monodromy matrix (i.e. magnons) and uj are their rapidities related
to pj by [3]

uj = u(pj ; λ), u(p; λ) ≡ 1

2
cot

p

2

√
1 +

λ

π2
sin2

p

2
, (1.3)

where λ is the ‘t Hooft coupling. S(pk, pj ; λ) is a phase shift [4] due to magnon scattering
which one may try to interpret as a two-particle scattering matrix of an integrable two-
dimensional field-theory [4, 7–9] whose fundamental excitations correspond to the spin-chain
magnons. The momenta pj = pj (λ, L,M) satisfying (1.1) are also subject to the quantization
condition

∑M
k=1 pk = 2πm encoding the fact of cyclicity of the trace of the corresponding

gauge-theory operators. Then, the energy of the spin-chain state or the anomalous dimension
of the corresponding operator is given by

E =
M∑

j=1

(√
1 +

λ

π2
sin2

pj

2
− 1

)
. (1.4)

The factor S1 in (1.2) is the standard Heisenberg model phase shift which enters also the
asymptotic (large L) BDS gauge theory Bethe ansatz [3]. An extra phase θ (common to all
sectors [10, 11]) is expected to be present in the exact ansatz which, according to the AdS/CFT
correspondence, should match the conjectured Bethe ansatz on the string-theory side [6, 12].
The precise structure of this phase (which at weak coupling should start from 3-loop λ2 terms
[6, 13, 14] and at strong coupling should include quantum string 1√

λ
corrections [15–17]) is

a key open problem at the moment [10, 18–21]. In addition to showing that S with correct
dressing phase θ does come out of the AdS5 × S5 string theory of [22], one is also to provide
a string-theory derivation of the dispersion relation (1.3), (1.4) containing the ‘discreteness’
factor sin2 p

2 ; important steps in the latter direction were recently made in [10, 23, 24].5

To understand how the Bethe ansatz (1.1) may be related to string theory one may try to
directly associate with it a two-dimensional action describing magnon interactions. At leading

5 On the gauge-theory side, the history of derivation of the square root formula
√

1 + λ

π2 sin2 p
2 for ‘magnon’ energy

starts (in the small p limit, sin p
2 → p

2 ) with [25]. All-order arguments for the validity of the formula with full sin2 p
2

were given in [26] (see equation (62) there) and in [27] (where sin2 p
2 appeared at intermediate steps of the derivation

of the BMN relation). More recently, (1.4) was derived [28] using a matrix model obtained by s-wave truncation of
SYM theory on S3. An interesting geometrical picture found in [28] apprears to provide a link to a related discussion
on the string side in [23].



Asymptotic Bethe ansatz S-matrix and Landau–Lifshitz-type effective 2d actions 13131

(1-loop) order in λ the effective 2d action describing the ‘low-energy’ part of the spectrum of
the ferromagnetic XXX1/2 model is the non-relativistic Landau–Lifshitz (LL) action. It can
be found by taking the continuum limit in the coherent state path integral representation for
the Heisenberg model [29, 30]. The S-matrix of the LL model on an infinite line does match
[8] the leading term in the small-momentum expansion (i.e. uj → 1

2 cot pj

2 → 1
pj

) of the
S1-factor in (1.2). The same LL action appears as a ‘fast-string’ limit of the classical string
action on R × S3 [30–32]. One can also reconstruct higher order in λ terms in a generalized
effective LL action by matching the energies of the Bethe ansatz states with their field-theory
counterparts [31, 33–37].

Our interest in this generalized LL action is due to the fact that it may serve as a bridge
between quantum string theory and the generalized Bethe ansatz (1.1). We expect that the
large L = J limit of a quantum effective string action will be related to an effective LL action
that reproduces the spin-chain S-matrix6.

Here we will not address in detail the relation to quantum string theory, concentrating as
a first step on the correspondence between the scattering phase entering the spin-chain Bethe
ansatz and the generalized LL model that reproduces it as its S-matrix. We shall demonstrate
that a low-momentum form of the BDS S-matrix S1 in (1.2) is the same as the quantum
S-matrix for an LL-type action with a particular quartic interaction term, thus generalizing to
all orders in λ the S-matrix relation [8] between the Heisenberg model and the standard LL
action. The fact that (a limit of) the BDS S-matrix can be interpreted as a quantum field theory
S-matrix is non-trivial, indicating the existence of a two-dimensional field-theory description
behind the asymptotic gauge theory spin chain.

We shall also show that including the AFS [6] phase in (1.2) leads in a similar way of
matching the S-matrices to a non-relativistic field-theory model with quartic interaction vertex
that matches exactly the one extracted (using the approach of [31]) from the classical string
action on R×S3. This may not be too surprising, given that the AFS Bethe ansatz was obtained
by discretizing [6] the classical R × S3 string Bethe equations of [32], but this relation may
help to relate the quantum deformation [15, 19, 20] of the AFS phase to world-sheet quantum
corrections in a more direct fashion. In the same spirit, we shall discuss the non-relativistic
limit of the AFS-type scattering matrix proposed in [5] for the SL(2) sector and find that it
coincides with the tree-level scattering matrix of classical string theory on AdS3 × S1. This
lends strong support to the idea that the dressing phase relating the ‘gauge’ and ‘string’ Bethe
ansätze is universal [10] for all sectors of the theory.

This paper is organized as follows. In section 2, we shall first review the structure of the
generalized LL action for the SU(2) sector, first in the SO(3) invariant form and then in
the complex scalar form found by expanding near the vacuum state. We shall also discuss
the definition of the theory on an infinite line (as required for computation of S-matrix), the
role of 2d UV cutoff and its relation to the spin chain. In section 3, we shall illustrate how to
compute the tree-level and 1-loop corrections to the 2-particle S-matrix for the generalized LL
model containing the all-order kinetic term and few higher derivative interaction terms. We
shall follow mostly the same methods as used at the leading order in λ in [8].

In section 4, we shall start with the spin-chain scattering phase in (1.2) and find its
low-energy limit in which one keeps only the leading in momentum term at each order in
expansion in λ. We shall consider separately the BDS and AFS ansätze and in the latter case
we emphasize the new features introduced by the presence of non-trivial corrections to the
phase in (1.2). Then in section 5 we shall reconstruct the exact (all-order in λ) quartic vertex in

6 It is important to emphasize that quantum corrections computed by quantizing the large-J limit of a classical action
need not necessarily be the same as the large-J limit of corrections found from the quantum effective action.
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the generalized LL action and show that the resulting quantum field-theory S-matrix matches
exactly the low-energy limit of the BDS spin-chain scattering phase.

In section 6, we shall comment on a generalization to larger (compact) sectors containing
SU(2) sector. In section 7, we shall discuss a relation between a non-relativistic LL-type
action reconstructed from the S-matrix of the AFS ansatz and string theory action on R × S3,
on AdS3 × S1 and the fermionic action [53] obtained by truncation of the full superstring
action [22] to two fermionic fields corresponding to SU(1|1) sector. We shall show that the
corresponding tree-level string S-matrices matches the low-energy, strong coupling limit of
the AFS-type S-matrix in the SU(2), SL(2) and SU(1|1) sectors, respectively. We shall also
explain that a specific non-local structure of the quartic interaction term in the LL action has its
origin in the elimination of the negative-energy modes when passing from a second-derivative
to a non-relativistic first-derivative action.

Section 8 will contain some concluding remarks. In appendix A, we shall present the
results for the quartic interaction vertex in the LL actions corresponding to the SU(1|1)

and SL(2) spin-chain sectors described by the BDS-type Bethe ansatz. In appendix B, we
shall give some details of the small momentum expansion of the leading quantum correction
[15, 19] to the AFS phase.

2. General structure of the effective Landau–Lifshitz-type action

The LL-type action we will be interested in appears in the description the low-energy modes
of the ferromagnetic SU(2) gauge theory spin chain. Its derivation from the spin-chain
Hamiltonian involves several steps [31, 34]. First, the quantum-mechanical path integral is
expressed in terms of spin coherent states parametrized by a unit 3-vector �na at each site
a = 1, . . . , J .7 The resulting (discrete) action contains a WZ-type (Berry phase) term [29]
linear in the time derivative of �na and a Hamiltonian part

∑J
a=1[λ(na+1 − na)

2 + O(λ2)]. One
then considers the large-J region and takes the continuum limit by truncating away all but
the low-energy spin wave excitations of the periodic chain; only the leading lowest-derivative
terms are kept at each order in λ. It turns out then that λ combines with powers of J into
an effective parameter λ̃ = λ

J 2 which manifests the existence (at least in the first few orders
of expansion in λ) of a scaling BMN-type limit. Furthermore, J then appears in front of the
action, implying that for fixed λ̃ the large-J limit is the same as the semiclassical limit, with
1/J corrections playing the role of quantum corrections to the classical LL model.

2.1. O(3) invariant �n-field action

The resulting action has the following structure (∂0 = ∂t , ∂1 ≡ ∂σ , �n2 = 1),

S = J

∫
dt

∫ 2π

0

dσ

2π
L, L = �C(n) · ∂0�n − H(∂1n), (2.1)

H = H2 +
∞∑

k=2

H2k, H2k ∼
(

λ

J 2

)k (
∂2k

1 n4 + · · · + ∂2k
1 n2k

)
, (2.2)

where J is the total spin equal to the spin-chain length L and �C(n) is the same as a monopole
potential on S2, i.e. dC = εijkni dnj ∧ dnk . The general form of the ‘kinetic’ part H2 can be
found [31, 33] from the continuum limit of the coherent state expectation value of the leading

7 �n represents two ‘phase-space’ variables of the ‘classical spin’ U∗ �σU = �n. On the string side �n corresponds to the
two transverse modes of a ‘fast’ string on R × S3.
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spin–spin part of the gauge theory dilatation operator [2, 41] (assuming consistency with the
BMN limit which is also implied in (1.1) and (1.2)

H2 = 1
4 �n(√1 − λ̃∂2

1 − 1
)�n, λ̃ ≡ λ

J 2
. (2.3)

The ‘2-loop’ [31], ‘3-loop’ [35, 36] and ‘4-loop’ [37] terms in H are

H4 = 1
32a1λ̃

2(∂1�n)4, (2.4)

H6 = 1
64 λ̃3

[
b1
(
∂1�n
)2(

∂2
1 �n)2

+ b2
(
∂1�n∂2

1 �n)2
+ b3(∂1�n)6

]
, (2.5)

H8 = λ̃4
[
c1
(
∂2

1 �n)4
+ c2(∂1�n)2

(
∂2

1 �n∂4
1 �n) + c3

(
∂1�n∂5

1 �n)(∂1�n)2 + c4
(
∂3

1 �n)2
(∂1�n)2

+ c5(∂1�n)4
(
∂2

1 �n)2
+ c6

(
∂1�n∂2

1 �n)2
(∂1�n)2 + c7(∂1�n)8

]
. (2.6)

The known coefficients consistent with the leading terms in the gauge-theory dilatation operator
[2, 41] and thus with the BDS ansatz (i.e. (1.1) with S = S1) are [31, 36, 37]

a1 = 3
4 b1 = − 7

4 , b2 = − 23
2 , b3 = 3

4 , (2.7)

c5 = 111
4096 , c7 = − 267

32 768 , c1 − c2 + c3 + c4 = − 59
2048 . (2.8)

While the coefficients a1 and b1 appear to be non-renormalized when going from small to
large λ region, the coefficients b2, b3 and at least c5 and c7 are, in fact, functions of λ [15, 36].
They have unequal values at λ → 0 and λ → ∞, i.e. they are found to be different from
the BDS coefficients in (2.7) when one starts from the ‘string’ AFS Bethe ansatz (which
includes a non-trivial phase θ [6] in S in (1.1). The ‘string’ values that agree with the classical
string-theory predictions are [31, 36, 37]

b2 = − 25
2 b3 = 13

16 , c5 = 119
4096 , c7 = − 323

32 768 . (2.9)

2.2. Complex scalar form of the action

One may solve the constraint �n2 = 1, i.e. n3 = √
1 − nsns (s = 1, 2) and express the action

(2.1) in terms of the two independent ‘magnon’ fields ns whose fluctuations describe deviations
from the ferromagnetic vacuum �n = (0, 0, 1) representing the gauge-theory BPS state trZJ .
As already mentioned, since J appears in front of the action (2.1) defined on a circle of
radius 1, the large-J expansion for fixed λ̃ and fixed length of the string represents quantum
loop expansion of the LL model. Keeping also the excitation number of a magnon state
fixed, these 1/J quantum corrections to the energies of the LL states then match finite-size
corrections computed directly from the Bethe ansatz [35, 36, 42].

Our aim here will be to compute the magnon S-matrix from the LL model and to compare
it to the spin-chain scattering phase S in (1.2). For this purpose, a different limit is appropriate,
in which the LL model is defined on an infinite line [8]. This can be accomplished by taking
J → ∞ while keeping the ‘t Hooft coupling λ and the magnon momenta fixed8. As follows
from the structure of (2.1), (2.2), rescaling the spatial coordinate

x = J

2π
σ, σ ∈ (0, 2π), (2.10)

8 Similar limit was considered in [7] and in connection with the antiferromagnetic state of spin chain [38–40].
Recently it was emphasized also in [23, 24].
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and making the field redefinition [35]

ns = 2
√

1 − z2zs, φ ≡ z1 + iz2, (2.11)

we can rewrite the LL action (2.1) as a ‘first-order’ action for a complex scalar ‘magnon’
field φ

S =
∫

dt

∫ J

0
dx
{
φ∗[i∂t − (√

1 − λ̃∂2
x − 1

)]
φ − V (φ, φ∗)

}
, (2.12)

λ̃ ≡ λ

(2π)2
. (2.13)

Here V contains terms of all orders in powers of φ and its spatial derivatives and depends only
on λ and not on J :

V = V4 + V6 + · · · , V2n ∼
∞∑

k=1

λ̃k∂2k
x (φ∗φ)n. (2.14)

The dependence on J is now only in the length of the spatial direction and thus J → ∞
corresponds to a theory on an infinite line (provided we also scale the quantum numbers mk

of modes on a circle so that momenta pk = 2πmk

J
stay fixed in the limit).

Explicitly, the leading quartic interaction term V4 originating from the first three terms in
H in (2.3) and (2.4) has the form (φ′ = ∂xφ)

V4 = |φ|2
√

1 − λ̃∂2
1 |φ|2 − 1

2 |φ|2(φ∗
√

1 − λ̃∂2
1 φ + c.c.

)
+ 1

2a1λ̃
2|φ′|4

+ 1
16 λ̃3[2(2b1 + b2)|φ′|2|φ′′|2 + b2(φ

′′2φ′∗2 + c.c.)] + O(λ̃4), (2.15)

or, expanded in λ̃ to ‘4-loop’ order,

V4 = λ̃

4
(φ∗2φ′2 + c.c.)

− λ̃2

8

[
1

2
|φ|2(φ′′′′φ∗ + c.c.) + 4|φ|2(φ′′′φ′∗ + c.c.) + 6|φ′′|2|φ|2 − 4a1|φ′|4

]

− λ̃3

4

[
1

8
|φ|2(φ(6)φ∗ + c.c.) +

3

2
|φ|2(φ(5)φ′∗ + c.c.) +

15

4
|φ|2(φ(4)φ′′∗ + c.c.)

+ 5|φ|2|φ′′′|2 − 1

2
(2b1 + b2)|φ′|2|φ′′|2 − 1

4
b2(φ

′′2φ′∗2 + c.c.)

]
+ O(λ̃4). (2.16)

The action (2.12) has manifest U(1) symmetry and ‘hidden’ O(3) symmetry (which was
explicit in (2.1). Since we expect this action to describe an integrable field theory, the quartic
interaction term may effectively determine all higher order terms (modulo field redefinitions):
the S-matrix should factorize and thus should be obtainable from bubble graphs with quartic
interactions only, just as in the leading-order LL action case discussed in [8].

2.3. Infinite line limit and small momentum expansion

In section 3, we shall first consider the tree-level 2-particle S-matrix for the action (2.12),
(2.16) and then also compute the first few terms in its loop expansion. We shall find that
the results for the choice of coefficients in (2.7) and (2.8) match the low-momentum limit of
the small λ expansion of the BDS S-matrix in (1.2). Then in section 4 we shall consider the
opposite problem of reconstructing higher order terms in (2.15) and (2.16) by starting with a
low-momentum limit of the full BDS S-matrix.
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To prepare for this discussion, it is important to clarify the nature of limits we will be
taking and also the role of the 2d field theory cutoff in this context. To consider the S-matrix,
we should ignore the periodicity condition in the spatial coordinate and define the field theory
on an infinite line. Formally, it may seem that this can be achieved by sending J in (2.12)
to infinity but this ignores the presence of a hidden UV scale in the problem. An indication
of a need for a spatial scale can be seen, e.g., from the fact that x in (2.12) does not have the
standard length dimension (λ̃ and J should be dimensionless).

Let us go back to the spin-chain picture and consider the limit in which the number of
sites J is sent to infinity while the periodicity condition is not imposed. In that case we get
an infinite 1d lattice whose spacing may be denoted as a. For a finite number of points J of
a periodic chain of length L the step of the lattice is a = L

J
. The limit we are interested in is

when both L and J are sent to infinity with a kept finite. More precisely, it is the dimensionless
product ap where p is a one-dimensional momentum (with canonical mass dimension) that
should be kept finite. The momenta of magnons on a circle are pk = 2πnk

L
= 2πnk

aJ
and they

remain finite provided nk is also scaled to infinity together with J .
Next, if we take a continuum limit a → 0 of the spin-chain Hamiltonian on an infinite

lattice (using that �nx+a − �nx = a�n′ + 1
2a2�n′′ + · · ·, etc) the result will differ from (2.12) by a

rescaling x → a−1x. Then ∂x will be replaced by a∂x and there will be a factor of 1
a

in front of
the action (coming from the integration measure). Higher derivative terms will be suppressed
by higher powers of a; most of them can be ignored assuming that one keeps only the leading
in a term at each order of expansion in λ. Note that the presence of the UV cutoff factor 1

a
in

front of the action is natural on power counting grounds: the standard loop expansion of the
leading-order LL action contains linear UV divergences [42, 43]. One may choose to ignore
all power divergences using, e.g., the zeta-function or dimensional regularization prescription
as in [8].9 Then a will play the role of an effective coupling or an effective 2d Planck constant
that counts loop order.

If we ignore all power divergences then the field-theory S-matrix will involve only
dimensionless products (ap, ap′) of the scale a and momenta. In the continuum limit, it
is natural to expect that it will match the spin-chain S-matrix only in the region when momenta
are small compared to the cutoff. Indeed, in the small momentum expansion both p and p′

are small compared to the cutoff scale a−1, i.e. ap → 0, ap′ → 0 but their ratio p/p′ is fixed.
Taking this limit can be formally implemented by scaling a to zero while assuming that λ̃(ap)2

is kept finite. This does not necessarily mean that λ is taken to be large: this means only that
one wants to keep the leading in ap → 0 expansion term at each order in expansion in λ, i.e.
the limit of small ap is taken before the limit of small λ.

The momenta pi in the spin-chain expressions (1.2), (1.3) are dimensionless,
corresponding to the choice of a = 1, i.e. of unit step of the lattice. Then pi in (1.3) should
stand for api if we want pi to have canonical mass dimension. Taking a → 0 corresponds to
uniformly scaling all momenta to zero, so that

u = 1

2
cot

ap

2

√
1 +

λ

π2
sin2

ap

2
→
(

1

ap
+ · · ·

)√
1 +

λ

π2
[(ap)2 + · · ·]. (2.17)

We shall discuss such an expansion of the spin-chain S-matrix (1.2) in section 4.
Let us mention also the analogy of this limit of the spin-chain S-matrix with the BMN-type

scaling limit in the Bethe ansatz equations (1.1). Suppose we take the large length L = J � 1
limit in (1.1) by rescaling at the same time the momenta so that the lhs of (1.1) stays finite,

9 Such a prescription that ignores all power divergences appears to be necessary in order to match the BDS S-matrix
(see section 5). It is also consistent with the expected conformal invariance of the dual string theory, predictions of
which we should eventually match by starting with a properly modified AFS ansatz.
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pk = β̃ ′
k

J
, i.e. β̃ ′

k will be finite in the limit. Then u(p) in (1.3) that enters the scattering phase
(1.2) will become

u = J ū + · · · , ū = 1

β̃ ′

√
1 +

λ

(2π)2J 2
β̃ ′2 (2.18)

and thus

S1(p
′, p) → Ŝ1(p

′, p) = ū(p′) − ū(p) + iJ−1

ū(p′) − ū(p) − iJ−1
. (2.19)

There is then a direct analogy with the discussion above with the role of a played by J−1,
assuming that we keep only the leading term in the J−1 expansion at each order in the small
λ expansion. This is formally the same as keeping λ̃ ≡ λ

J 2 fixed while taking J to be large.
Expanding Ŝ1(p

′, p) in powers of J−1 will be analogous to the small momentum expansion
or quantum loop expansion in the corresponding effective field theory. The Bethe ansatz
equations (1.1) make sense of course only for the theory on a circle, implying that at leading
order in J−1 one has eiβ̃ ′

k = 1, i.e. β̃ ′
k = 2πnk + O(J−1).10

One may wonder if it is possible to extend the matching between the two-dimensional
field-theory S-matrix and the spin-chain S-matrix by keeping all the higher derivative terms in
the kinetic term (�nx+a − �nx = 2 sinh a∂x

2 �nx+ a
2
) but still replacing the lattice sum by an infinite

integral and �nx(t) by a continuous field �n(t, x) (with J assumed to be taken to infinity so that
the theory is defined on an infinite line). In this case the kinetic term in (2.3) or in (2.12) will
be replaced by its ‘discreet’ counterpart [36]:

i∂t −
(√

1 − 4λ̃ sinh2 a∂x

2
− 1

)
. (2.20)

The corresponding dispersion relation is the same as for the spin-chain magnons: ω =√
1 + 4λ̃ sin2 ap

2 − 1. Moreover, the range of momenta is restricted to
(−π

a
, π

a

)
, so that the

loop integrals should be automatically finite for a finite cutoff a. One may then try to fix the
quartic interaction in the corresponding analogue of (2.12) so that to match the spin-chain
S-matrix beyond the small a or low-momentum limit. We will not attempt to do this here.
One conceptual issue is that if one does not use the small a expansion, it is not clear how
to reinterpret the BDS S-matrix as a sum of bubble graphs in field theory, following the LL
example of [8]. One possibility is that the resulting action may be considered as a quantum
effective action, whose tree level S-matrix should then match the exact spin-chain S-matrix
in11.

10 In [8] the logic was to start with the LL model on a line, derive the corresponding quantum S-matrix
1/pk−1/pj +i
1/pk−1/pj −i

,

and then use it in the Bethe ansatz equations like (1.1) with eipkJ on the lhs The main observation was that the
resulting Bethe ansatz is the same as the limit of the Heisenberg model Bethe ansatz in which the (dimensionless)
momenta pj are taken to be small compared to 1. Indeed, the resulting solutions for low-energy modes found from
the two Bethe ansätze are then the same in the large-J limit (up to order 1/J 2 terms).
11 This interpretation may be useful in order to make contact with string theory: presumably, such action may be
derived by taking large-J limit in the quantum string effective action for a string moving on S3 part of AdS5 × S5,
just like the classical LL model followed from the classical string action [30, 31]. We shall return to the discussion
of related issues in section 7.
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3. Field-theory S-matrix

The quadratic part of the action (2.12) resembles the action for the positive-energy part of
a massive relativistic scalar field in two dimensions. Indeed, the classical solutions in the
free-field limit are12

φ(x, t) =
∫

dp√
2π

ap e−iωpt+ipx, φ∗(x, t) =
∫

dp√
2π

a∗
p eiωpt−ipx (3.1)

where13

ωp = e(p) − 1, e(p) ≡
√

1 + λ̃p2. (3.2)

In the quantum-theory
[
ap, a

†
p′
] = δ(p − p′). The interaction term V in (2.12), however,

depends only on spatial derivatives implying that the S-matrix is not expected to be relativistic-
invariant. A possible approach to finding a similar action from string theory is to solve for
half of modes at the classical level [30, 31] or effectively to integrate them out at the quantum
level (see section 7).

To compute the S-matrix corresponding to (2.12) we follow the same steps as in case of
the leading-order LL action in [8]. The crucial simplifying point is that the propagator can be
chosen as the retarded one, D(x, t) ∼ θ(t), i.e.

D(ω, p) = i

ω − ωp + iε
. (3.3)

This implies that the 2-body S-matrix is a sum of bubble diagrams with V4 in (2.14) as vertices.
Let us consider the 2-body scattering process with the initial state |pp′〉 = a

†
pa

†
p′ |0〉 (initial

particles being 2 magnons with momenta p, p′), and the final state as |kk′〉 = a
†
ka

†
k′ |0〉. The

2-body scattering matrix is

〈kk′|Ŝ|pp′〉 = 〈kk′|T e−i
∫

dt dxV4 |pp′〉. (3.4)

As usual, the translational invariance of the action implies momentum conservation, i.e. that
〈kk′|Ŝ|pp′〉 is proportional to δ(2)(kµ + k′µ − pµ − p′µ). In two dimensions, the energy and
momentum conservation allow the two particles to only exchange their momenta, so that the
energy–momentum conservation delta-function becomes

δ(ωp + ωp′ − ωk − ωk′)δ(p + p′ − k − k′) = K(p, p′)δ+(p, p′, k, k′), (3.5)

δ+ ≡ δ(p − k)δ(p′ − k′) + δ(p − k′)δ(p′ − k), K(p, p′) = 1
dωp

dp
− dωp′

dp′

. (3.6)

Using (3.2), we get

K(p, p′) = λ̃−1e(p)e(p′)
pe(p′) − p′e(p)

= λ̃−1

p − p′

[
1 +

1

2
λ̃(p2 + p′2 + pp′)

+
1

8
λ̃2(p3p′ + pp′3 + 3p2p′2 − p4 − p′4) + O(λ̃3)

]
. (3.7)

One finds that

〈kk′|Ŝ|pp′〉 = S(p′, p)δ+(p, p′, k, k′), (3.8)

where the ‘kinematic’ factor K(p, p′) is included into the 2-body S-matrix S(p′, p).
12 We are using a different normalization of creation operators than in [8] and thus some subsequent formulae differ
by factors of 2π .
13 If one rescales the time coordinate and thus ωp by λ̃ then ωp =

√
p2 + m2 − m2, m2 ≡ 1/λ̃. This normalization

corresponds to extracting one power of λ̃ from the spin-chain energy, so that the Heisenberg model energy does not
have an overall λ̃ factor.
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3.1. Leading-order tree-level term

Starting with the interaction term in (2.15) and (2.16) and computing the leading-tree-level
contribution of the quartic vertex we obtain the following expression,

k’

p’p

k

= −i〈kk′|V4|pp′〉

= −i
[√

1 + λ̃(p′ − k′)2 +
√

1 + λ̃(p′ − k)2 +
√

1 + λ̃(p − k′)2

+
√

1 + λ̃(p − k)2 −
√

1 + λ̃k′2 −
√

1 + λ̃k2 −
√

1 + λ̃p′2 −
√

1 + λ̃p2
]

− 2ia1λ̃
2pp′kk′

− i

8
λ̃3pp′kk′[(2b1 + b2)(p + p′)(k + k′) − 2b2(pp′ + kk′)] + O(λ̃4), (3.9)

where for generality we kept the exact form of the square root terms in (2.15). Expanding in
λ we get

−i〈kk′|V4|pp′〉 = iλ̃(pp′ + kk′) +
iλ̃2

8
[p4 + p′4 + k4 + k′4 − 4(k + k′)(p3 + p′3)

− 4(k3 + k′3)(p + p′) + 6(k2 + k′2)(p2 + p′2) − 16a1kk′pp′]

+
iλ̃3

4

{
− 1

4
(p6 + p′6 + k6 + k′6) + 5(p3 + p′3)(k3 + k′3)

+
3

2
[(k + k′)(p5 + p′5) + (p + p′)(k5 + k′5)]

− 15

4
[(k2 + k′2)(p4 + p′4) + (p2 + p′2)(k4 + k′4)]

− 1

2
(2b1 + b2)pp′kk′(p + p′)(k + k′) + b2pp′kk′(pp′ + kk′)

}
+ O(λ̃4). (3.10)

Taking into account the relations between p, p′ and k, k′ implied by momentum conservation
(3.5), (3.6) we find the following contribution of the four-point vertex

−i〈kk′|V4|pp′〉 = 2iλ̃pp′ − iλ̃2

[
pp′(p2 + p′2) −

(
3

2
− 2a1

)
p2p′2

]

+
i

4
λ̃3pp′

[
3(p4 + p′4) − 1

2
(15 + 2b1 + b2)pp′(p2 + p′2)

+ (10 − 2b1 + b2)p
2p′2

]
+ O(λ̃4). (3.11)

Multiplying this by the kinematic factor in the delta-function (3.7) we obtain the leading terms
in the tree-level 2-particle S-matrix

S(p′, p) = 1 + Stree(p
′, p) + · · · , (3.12)

corresponding to the action (2.12), (2.15)

Stree(p
′, p) = 2ipp′

p − p′

{
1 + λ̃pp′

(
−1

4
+ a1

)

− 1

8
λ̃2pp′

[
(17 + 2b1 + b2)(p

2 + p′2) +
1

2
(−9 + 2b1 − b2)pp′

]
+ O(λ̃3)

}
.

(3.13)

vertexeq.eps
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The comparison with the gauge Bethe ansatz allows one to fix the 2-loop coefficient a1 and
two of the three 3-loop coefficients—b1 and b2. Indeed, for the values in (2.7) we get

S
(g)
tree = 2ipp′

p − p′ + λ̃
ip2p′2

p − p′ − λ̃2 ip2p′2(p2 + p′2 − pp′)
4(p − p′)

+ O(λ̃3), (3.14)

and this is the same S-matrix that comes out of the expansion of S1 in (1.2) and (1.3) in small
momenta pk = p′, pj = p at each order in expansion in λ (see (4.3). We thus generalize the
result of [8] that the leading ‘1-loop’ term 2ipp′

p−p′ in (3.13) which is the tree-level S-matrix of
the standard LL model is the same as the small momentum expansion of the phase shift S1

(1.2) of the Heisenberg spin-chain model to the next two orders in small λ expansion.
In the case of the LL model that originates from string theory and matches the predictions

of the ‘string’ Bethe ansatz that includes the particular AFS [6] dressing phase θ in (1.2), the
coefficients in equation (2.2) are given by (2.9) [31, 36] (i.e. a1, b1 are the same while b2 is
smaller by 1) one finds instead

S
(s)
tree = 2ipp′

p − p′ + λ̃
ip2p′2

p − p′ − λ̃2 ip2p′2(p2 + p′2)
8(p − p′)

+ O(λ̃3). (3.15)

As expected, the ‘gauge’ (3.14) and ‘string’ (3.15) S-matrices differ starting at 3-loop order.
Expression (3.15) follows indeed from the small λ expansion of the phase-shift factor of the
AFS ansatz (see (4.13).

We have also repeated the above computation including the λ4 terms in (2.6) and checked
that the resulting S-matrix for the values of ‘4-loop’ coefficients in (2.8) and (2.9) is again in
agreement with the next-order O(λ̃3) term in (3.14) in the small momentum expansion of the
BDS and AFS S-matrices (1.2), (1.3) given in (4.1) and (4.13).

3.2. 1-loop correction: order λ term

Let us now consider the 1-loop correction to the above tree-level S-matrix (3.13) following
the same steps as in the leading-order ‘1-loop’ LL model case in [8]. One may try to compute
subleading in small momentum expansion term at each order in small λ expansion. Here we
shall consider the leading correction to the first two O(λ0) and O(λ1) terms in (3.13). While
we will be expanding in λ, it is useful to keep the λ-dependent corrections to propagator before
expanding in λ.14 At this order, the correction to the scattering matrix is (as mentioned before,
kinematical constraints require that p = k or p = k′; we consider explicitly only the diagram
with p = k, p′ = k′)

k’

p’p

k

p’p+( ) 2/ −q

p’p+( ) 2/ +q

=
∫

dω dq

(2π)2
D

(
p + p′

2
+ q

)
D

(
p + p′

2
− q

)

×
[
V

(
p, p′,

p + p′

2
+ q,

p + p′

2
− q

)]2

(3.16)

D

(
p + p′

2
+ q

)
= i

1
2 (ωp + ωp′) + ω − ω 1

2 (p+p′)+q + iε

= i

ω + λ̃
4 (p2 + p′2) − λ̃2

16 (p4 + p′4) − λ̃
2

(
p+p′

2 + q
)2

+ λ̃2

8

(
p+p′

2 + q
)4

+ O(λ̃3) + iε

(3.17)
14 This takes into account the diagrams with extra insertions of the 4-derivative term in the kinetic part of (2.12) into
the internal lines.

largersect.eps
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V = iλ̃

[
pp′ +

(p + p′)2

4
− q2

]
+

iλ̃2

8

[
2q4 + 3q2(p − p′)2

− 7

8
(p4 + p′4) − 9

2
pp′(p2 + p′2) − 21

4
p2p′2

]
+ O(λ̃3) (3.18)

where ω is the energy of the virtual particle with momentum q and we used (2.16) with a1 = 3
4 .

The integral over ω is easily done, and expanding the propagator in λ we find that the O(λ0)

contribution to the scattering amplitude (3.8) is (ignoring δ+ factor) [8]

−2
p2p′2

(p − p′)2
. (3.19)

Here we divided by a symmetry factor of 2 and included the leading λ̃−1

p−p′ δ+ term from the
kinematic factor (3.7).

At the next order in λ there are two contributions:

(i) = − iλ̃2

4

∫
dq

2π

pp′ + (p+p′)2

4 − q2

q2 − (p−p′)2

4

[
2q4 + 3q2(p − p′)2 − 7

8
(p4 + p′4)

− 9

2
pp′(p2 + p′2) − 21

4
p2p′2

]
(3.20)

and

(ii) = iλ̃2

8

∫
dq

2π

(
pp′ + (p+p′)2

4 − q2
)2

(
q2 − (p−p′)2

4

)2

[
p4 + p′4 −

(
p + p′

2
+ q

)4

−
(

p + p′

2
− q

)4
]

.

(3.21)

Evaluating the two integrals ignoring the power divergences by using the dimensional
regularization prescription

∫
dqqα = 0 (α = 0, 1, 2, . . .) as in [8], we obtain

(i) = 4λ̃2 p2p′2(p2 + p′2)
p − p′ , (ii) = −2λ̃2 p2p′2(p2 + p′2 + pp′)

p − p′ . (3.22)

Adding them together (while dividing by a symmetry factor of 2) and including the delta-
function factor in (3.7) we finally obtain the next to a leading-order term in the small momentum
expansion of the 1-loop contribution to the S-matrix of the generalized LL model (2.12).
Adding this 1-loop correction to the tree-level expression (3.19) we get

Stree+1−loop(p, p′) = −2
p2p′2

(p − p′)2
− 2λ̃

p3p′3

(p − p′)2
+ O(λ̃2). (3.23)

This expression agrees with the next-order term in the expansion in momenta of the S-matrix
in the BDS and AFS Bethe ansätze in (4.1) and (4.13).

Furthermore, we can follow [8] and consider higher loop ‘bubble’ graphs and show that
their contributions form a geometric series as in the case of the leading-order LL action. We
shall postpone the details of this until section 5, where we will construct the all-order scattering
matrix.

4. Small momentum expansion of S-matrix of BDS and AFS Bethe ansätze

Let us now determine explicitly the low-energy form of the spin-chain S-matrix in (1.2).
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4.1. BDS case

Starting with the S-matrix of the BDS ansatz, i.e. with S1 in (1.2) and (1.3)

SBDS(p
′, p) = u(p′) − u(p) + i

u(p′) − u(p) − i
, (4.1)

u(p) = 1

2
cot

p

2

√
1 + 4λ̃ sin2

p

2
, λ̃ = λ

(2π)2
, (4.2)

we may expand it in small momenta, and then also expand in λ

SBDS(p
′, p) = 1 +

2ipp′

p − p′ − 2
p2p′2

(p − p′)2
− ip2p′2(p2 + 10pp′ + p′2)

6(p − p′)3
+ O(p4)

+ λ̃

[
ip2p′2

p − p′ − 2p3p′3

(p − p′)2
− ip2p′2(p4 + 16p2p′2 + p′4)

6(p − p′)3
+ O(p6)

]

− λ̃2

[
ip2p′2(p2 − pp′ + p′2)

4(p − p′)
− p3p′3

2

− ip2p′2(p6 − 3p5p′ + 12p4p′2 − 32p3p′3 + 12p2p′4 − 3pp′5 + p′6)
16(p − p′)3

+ O(p8)

]

+ λ̃3

[
ip2p′2(p4 − p3p′ + p2p′2 − pp′3 + p′4)

8(p − p′)
+ O(p8)

]
+ O(λ̃4). (4.3)

To compare with the S-matrix of the effective Landau–Lifshitz model (2.1), (2.3) with the
dispersion relation (3.2) we are to consider a particular resummation of part of the terms in
expansion (4.3). We shall first keep only the leading term in small momentum expansion at
each order in λ and then resum the series in λ. This will determine the tree-level S-matrix
of the corresponding LL model. We can then also keep certain subleading terms in small
momentum expansion that will combine into the geometric series (as in the leading-order LL
model case in [8]). In this way we get

SBDS → S̃BDS(p
′, p) = 1 +

2ipp′

pe(p′) − p′e(p)
− 2p2p′2

[pe(p′) − p′e(p)]2
+ . . . ,

e(p) ≡
√

1 + λ̃p2 (4.4)

where 2ipp′
pe(p′)−p′e(p)

represents all leading terms in p at each order in λ.
The reason for this particular structure can be understood by noting that taking p small

and keeping only the leading in p term in the expansion of the λ sin2 p

2 term in u(p) in (4.1)
gives

u(p) → 1

p

√
1 + λ̃p2, (4.5)

SBDS = u(p′) − u(p) + i

u(p′) − u(p) − i
→ S̃BDS =

1 + ipp′
pe(p′)−p′e(p)

1 − ipp′
pe(p′)−p′e(p)

. (4.6)

Then (4.4) follows upon expansion in small momenta with e(p) kept fixed. This limit is
thus formally equivalent to taking p → 0 while keeping λp2 fixed. As was mentioned in
section 2.3, this limit is reminiscent of the BMN-type scaling limit with small p expansion
corresponding to 1/J expansion (note that the structure of the LL action (2.1) is indeed
consistent with this scaling limit).
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While the first two terms (4.4) in the small momentum expansion of S̃BDS (4.6) at fixed
e(p) are the same as in SBDS, the higher order terms are different. This is clear already at the
leading order in λ, i.e. at the level of the Heisenberg model versus the standard LL model. We
have from (4.6) leads to

S̃BDS(λ → 0) =
1 + ipp′

p−p′

1 − ipp′
p−p′

= 1 +
2ipp′

p − p′ − 2p2p′2

(p − p′)2
− 2ip3p′3

(p − p′)3
+ O(p4), (4.7)

where the order p3 term is different from the similar one in the first line of (4.3) by

ip2p′2(p2 + 10pp′ + p′2)
6(p − p′)3

− 2ip3p′3

(p − p′)3
= ip2p′2

6(p − p′)
. (4.8)

This difference has its origin in the small momentum limit, which replaces 1
2 cot p

2 with 1
p

on the
effective field-theory side. Interestingly, after extracting the kinematic factor (3.7) proportional
to 1

p−p′ this difference is represented by a local vertex which may thus be interpreted as a

contribution of a local counterterm one may add to the leading-order LL action15.

4.2. AFS case

In the case of the ‘string’ Bethe ansatz of AFS [6] the scattering matrix (1.2) contains a
particular dressing phase:

SAFS = SBDS eiθAFS , θAFS = 2
∞∑

r=2

(
λ̃

4

)r

[qr+1(p)qr(p
′) − qr+1(p

′)qr(p)], (4.9)

where

qr(p) = 2 sin((r − 1)
p

2 )

r − 1



√

1 + 4λ̃ sin2 p

2 − 1

λ̃ sin p

2




r−1

. (4.10)

To match quantum string-theory results, the phase in (1.2) must receive modifications at
subleading orders in strong coupling expansion [15].

The general expression for the phase is given by a double sum of the charges qr [11, 15, 10]
with coefficients having a non-trivial [15, 19–21] dependence on λ:

θ(p′, p; λ) = 2
∞∑

r=2

∞∑
s=r+1

crs(λ)

(
λ̃

4

) r+s−1
2

[qs(p)qr(p
′) − qs(p

′)qr(p)]. (4.11)

Here

crs(λ) = δs,r+1 +
1√
λ̄

ars +
1

(
√

λ̄)2
brs + · · · , (4.12)

and ars = 4
π

(r−1)(s−1)

(r−1)2−(s−1)2 for r + s = odd and zero otherwise [19]. The relation between the
general Bethe ansatz (1.1) with the phase (4.11) and the AFS ansatz should be understood as
a statement that the coefficients crs at large λ reduce to δs,r+1.16

15 One choice for such a counterterm is �n′4, which will have one less power of λ compared to the 2-loop term in
(2.4). A more natural alternative would be the term �n′′2 coming out of subleading term in expansion of sinh2 term
in (2.20). Strangely, the required coefficient of such a counterterm (5/6) happens to be different from that following
from (2.20).
16 To say that AFS ansatz is a strong coupling limit of the general string ansatz is not precise as λ enters not only in
crs but also in the expressions for uj and qr .
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Let us first ignore the subleading terms in (4.12) and consider small momentum expansion
of the AFS S-matrix (4.9) in the same way as we did above in the BDS case. Expanding in
small momenta and then in λ we obtain

SAFS(p
′, p) = 1 +

2ipp′

p − p′ − 2p2p′2

(p − p′)2
− ip2p′2(p2 + 10pp′ + p′2)

6(p − p′)3
+ O(p4)

+ λ̃

[
ip2p′2

p − p′ − 2p3p′3

(p − p′)2
− ip2p′2(p4 + 16p2p′2 + p′4)

6(p − p′)3
+ O(p6)

]

− λ̃2

[
ip2p′2(p2 + p′2)

8(p − p′)
− p3p′3

4
+ O(p7)

]

+ λ̃3

[
ip2p′2(p4 + p′4)

16(p − p′)
+ O(p8)

]
− λ̃4

[
5ip2p′2(p6 + p′6)

128(p − p′)
+ O(p10)

]

+ λ̃5

[
7ip2p′2(p8 + p′8)

256(p − p′)
+ O(p12)

]
+ O(λ̃6). (4.13)

This expression is different from the expansion in (4.3) starting with the 3-loop λ̃2 terms.
As in the BDS case, we may collect all the leading-order terms in small momentum at

each order in λ, and then sum up the expansion in λ. The result may be again interpreted as a
tree-level S-matrix of an effective field theory.

Given that the ‘string’ Bethe ansatz was constructed by starting with the strong-coupling
region, here it may be more appropriate to view this low-energy limit as17

p → 0, λp2 = fixed, (4.14)

i.e. as p → 0 with λ ∼ p−2 → ∞. Since λ is then effectively taken to be large this suggests
that in this limit quantum string 1√

λ
corrections to the phase in (4.12) may be ignored. Indeed,

as we shall find in section 7.2, this low-energy, strong coupling limit of the AFS S-matrix
is in perfect agreement with the classical S-matrix of the LL-type model originating in a
‘non-relativistic’ limit from the string sigma model on R × S3.

Taking the limit p → 0 with λp2 = fixed in (4.9) and (4.10) as in (4.5) and (4.6) we get

qr(p) → p

[
e(p) − 1

1
2 λ̃p

]r−1

, (4.15)

θAFS → θ̃AFS = (p′[e(p) − 1] − p[e(p′) − 1])
∞∑

r=2

(
[e(p) − 1][e(p′) − 1]

λ̃pp′

)r−1

. (4.16)

Thus

θ̃AFS = (p′[e(p) − 1] − p[e(p′) − 1])
[e(p) − 1][e(p′) − 1]

λ̃pp′ − [e(p) − 1][e(p′) − 1]
(4.17)

so that

SAFS → S̃AFS = S̃BDS eiθ̃AFS , (4.18)

S̃AFS(p
′, p) =

1 + ipp′
pe(p′)−p′e(p)

1 − ipp′
pe(p′)−p′e(p)

exp

[
i
(p′[e(p) − 1] − p[e(p′) − 1])[e(p) − 1][e(p′) − 1]

λ̃pp′ − [e(p) − 1][e(p′) − 1]

]
.

(4.19)

17 Here p stands, of course, for both p and p′.
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Note that like ipp′
pe(p′)−p′e(p)

in (4.6) the phase θAFS scales linearly with momentum (at fixed

λp2) so that the leading term in the small momentum expansion is then

S̃AFS = 1 + (S̃AFS)tree + · · · , (4.20)

(S̃AFS)tree = 2ipp′

pe(p′) − p′e(p)
+

i(p′[e(p) − 1] − p[e(p′) − 1])[e(p) − 1][e(p′) − 1]

λ̃pp′ − [e(p) − 1][e(p′) − 1]
.

(4.21)

The expansion of (S̃AFS)tree in powers of λ̃ then reproduces all the leading in small momentum
terms at each order in λ in (4.13). An equivalent form of (4.21) is

(S̃AFS)tree = 2iF(p, p′)
pe(p′) − p′e(p)

, (4.22)

where

F(p, p′) = pp′ + 1
2 [pe(p′) − p′e(p)]θ̃AFS

= λ̃−1(λ̃pp′ − [e(p) − 1][e(p′) − 1])
[
1 + 1

4 (λ̃pp′ − [e(p) − 1][e(p′) − 1])
]
.

(4.23)

By analogy with the BDS case one could expect that the expression in (4.19) may be possible
to put into a ‘ratio’ form similar to (4.6), i.e. that the subleading terms in (4.20) should form
geometric series

S̃ =
1 + iF(p,p′)

pe(p′)−p′e(p)

1 − iF(p,p′)
pe(p′)−p′e(p)

. (4.24)

This, however, does not follow from (4.19). Moreover, the expression in (4.19) or in (4.20)
cannot be trusted beyond the leading term (S̃AFS)tree which scales as first power of momentum.

The reason is that the corrections to the phase (4.11), (4.12) which we ignored produce
extra terms in the exponent in (4.19) that scale as quadratic and higher power of momenta.
Indeed, in our low-energy limit (4.14) qr in (4.15) scales as pr and so the leading (AFS) term
in the phase (4.11), (4.12) scales linearly with p. The subleading terms ignored in the AFS
approximation (4.19) then scale as higher powers p2, p3, . . . and thus potentially contribute
to the terms indicated by ellipsis in (4.20).

It could happen that for a special choice of the coefficients in (4.12) we could indeed end
up with (4.24). It is possible to test this conjecture at the level of the first subleading term in
(4.24) using the explicit value of the coefficients ars in (4.12). One finds (see appendix B) that
the coefficient of the corresponding order p2 correction to the phase depends on odd powers
of our fixed parameter

√
λp,

δS̃AFS = − i

3π
λ̄3/2p2p′2(p − p′) + · · · (4.25)

i.e. it explicitly involves
√

λ, while F in (4.23) contains only integer powers of λ. This non-
analyticity resulting from the first quantum correction to the phase has of course the same
origin as that found in [15, 17]. It implies that the first subleading correction in (4.20) may not
agree with the conjecture (4.24).18 Thinking of the LL action as a low-energy approximation
to an effective quantum 2d string action (which contains string α′ ∼ 1√

λ
corrections) one may

18 It appears, however, that a more definitive statement requires knowing all higher order corrections. While the
particular

√
λ dependence of the first correction to θ leads to

√
λ-dependent corrections to (4.19), a resummation of

the full series may change this dependence.
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be able to reproduce (4.25) and similar corrections starting with (2.12) and (2.16) where b2

and other higher coefficients in (2.2) are actually functions of λ,

b2(λ) = b2s +
k1√
λ̄

+ · · · , (4.26)

interpolating between the weak coupling (2.7) and strong-coupling
(
b2s = − 25

2

)
(2.9) values

[15, 36] (cf (3.13).
The expression for (S̃AFS)tree (4.21) is more complicated than the corresponding one for

(S̃BDS)tree (4.6). For that reason in the next section we shall use the BDS case to illustrate
how to reconstruct an LL-type field theory model that reproduces such an S-matrix. We shall
return to the AFS case in section 7.2 where we will show that (4.22) is precisely the S-matrix
corresponding to the four-point vertex in the ‘non-relativistic’ limit of the classical string
theory on R × S3.

5. All-order Landau–Lifshitz-type action corresponding to BDS S-matrix

We have seen that the generalized LL action (2.1)–(2.6) defined on an infinite line leads to
the S-matrix which is the same as the leading terms in the small momentum expansion of
the magnon S-matrix that enters the gauge-theory BDS or ‘string’ AFS Bethe ansätze. The
matching depends on the proper choice of the coefficients of the interaction terms in the LL
action: with the ‘gauge-theory’ choice (2.7), (2.8) we found that equations (3.14) and (3.23)
match the respective terms in (4.3), while for the ‘string-theory’ choice (2.9) we found that
the ‘3-loop’ term in (3.15) matches the corresponding term in (4.13). Equivalently, matching
onto BDS or AFS S-matrix could be used to fix (part of) the coefficients (a1, b1, b2, c5, c7, . . .)

in the LL action.
We may then turn the problem around, i.e. follow the standard field theory logic and try

to reconstruct the low-energy effective field theory which will be consistent with a particular
small-momentum limit (4.4), (4.6) of the BDS S-matrix to all orders in expansion in λ. The
same can be done also in the AFS case and thus may be important for understanding of how a
similar S-matrix may be originating from quantum string theory.

The low-energy limit S̃BDS (4.6) of the BDS S-matrix implies the dispersion relation (3.2),
so that we shall assume that the effective action corresponding to S̃BDS has the structure (2.12),
where the interaction part V is to be determined.

Quite generally, a 2-body S-matrix fixes the on-shell value of the quartic vertex in V .
The assumption that this field theory is integrable (implying factorization of the multi-particle
S-matrix) determines the on-shell values of the interaction terms with higher number of fields
in terms of the quartic one19. Some of the relations constraining them stem also from the
SO(3) symmetry of the �n-field LL action which is spontaneously broken to U(1) symmetry
of the action constructed from the on-shell vertex for the magnon fields φ, φ∗.

The above discussion suggests that the leading non-trivial term in (4.4)

(S̃BDS)tree = 2ipp′

pe(p′) − p′e(p)
(5.1)

or in S̃BDS in (4.6) may be interpreted as a tree-level field-theory S-matrix. A non-trivial
consistency check that S̃BDS can indeed be interpreted as a quantum S-matrix of an interacting
field theory of LL type is that higher powers of ipp′

pe(p′)−p′e(p)
(coming from the expansion of

S̃BDS in (4.6) in powers of momenta with e(p) kept fixed) are the same as loop corrections

19 In particular, this means that the value of the coefficient b3 in (2.5) is fixed by the values of b1, b2, and similar
relations should hold at higher orders in derivative expansion.
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to the S-matrix of a two-dimensional field theory with the interaction vertex determined from
(5.1). More precisely, these higher order terms should represent the contributions of bubble
graphs with several insertions of this quartic vertex.

This is what we are going to show below, thus generalizing the relation [8] between the
low-momentum (or ‘continuum’) limit of the Heisenberg chain S-matrix and the S-matrix of
the quantum LL model to the BDS case, i.e. to all orders in λ. As a result, we will find an
effective two-dimensional field theory behind the low-energy limit of the BDS S-matrix.

5.1. Tree-level four-point interaction vertex

Dividing (5.1) by the exact kinematic factor coming from the momentum conservation delta-
function (3.7) we conclude that, up to the use of momentum conservation constraints, the
exact on-shell four-point vertex should be given by

Von-shell(p, p′) = iλ̃
2pp′

e(p)e(p′)
. (5.2)

Here the leading term in the expansion in λ is indeed consistent with (3.11). More precisely,
the quartic term in the effective action (2.12) written in momentum representation with the
four fields put on-shell has the form∫

dp dp′ dk dk′V(p, p′; k, k′)K(p, p′)δ+(p, p′, k, k′)apap′a∗
k a

∗
k′ , (5.3)

where ap is the Fourier transform of the on-shell field φ (3.1). The vertexV(p, p′; k, k′) should
be symmetric under the interchanges p ↔ p′, k ↔ k′, and also under (p, p′) ↔ (k, k′) to
ensure the reality of the above expression. To extend the vertex off shell, we shall assume
that the action has the same structure as at lowest orders (2.15) and (2.16), i.e. the interaction
terms should involve only spatial derivatives. There are many possible off-shell extensions
of (5.2) consistent with symmetries of (5.3); they will lead to actions differing only by field
redefinitions. The simplest possible choice for the off-shell vertex is a (p, p′) ↔ (k, k′)
symmetrization of (5.2):

V(p, p′; k, k′) = iλ̃pp′

e(p)e(p′)
+

iλ̃kk′

e(k)e(k′)
. (5.4)

Expanding this in λ̃ we obtain

V = iλ̃(pp′ + kk′) − i

2
λ̃2[pp′(p2 + p′2) + kk′(k2 + k′2)] + O(λ̃3). (5.5)

The λ̃2 term here appears to be different from that in (3.10), though the two agree on-shell (i.e.
the λ̃2 terms in (3.11) and in (5.2) are the same). As we shall explain below, this is a reflection
of a different choice of an off-shell extension.

In coordinate space (5.4) corresponds to the following term in the Lagrangian in (2.12)
and (2.14):

V4 = 1

4
λ̃




φ∗ ∂x√

1 − λ̃∂2
x

φ




2

+ c.c.


 . (5.6)

Again, the order λ̃2 term in the expansion of (5.6) is different from its counterpart in (2.16).
It may seem puzzling how the two actions can be related by a field redefinition given that the
interaction terms do not involve time derivative while the kinetic term does. The way how
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it works happens to be a peculiarity of first-order two-dimensional field theories. Consider a
field redefinition φ → φ + δφ with

δφ = − 3
2 λ̃(φ′′∗φ2 + 2φφ′φ′∗ + φ∗φ′2). (5.7)

This produces the following leading-order change in the Lagrangian in (2.12)

δL = −i
(
φ̇ − i

2
λ̃φ′′

)∗
δφ + c.c. + O(φ6). (5.8)

The key observation is that the time-derivative term drops out since it can be written (using
integration by parts) as a total derivative:

−iφ̇∗δφ + c.c. = 3iλ̄

4

d

dt
(φ′2φ∗2 − φ2φ′∗2). (5.9)

The remaining term λ̃
2 φ′′∗δφ + c.c. gives an extra λ̃2 contribution to the 4-vertex which is

precisely the difference between (5.6) and (2.16). As expected, (5.8) and thus this remaining
spatial derivative term vanishes on-shell, i.e. the two actions give the same tree-level S-matrix.

One may wonder which is an SO(3) invariant action (2.1) for the unit vector �n which
leads to the action (2.12) with the vertex given in (5.6). As follows from (2.15) and (3.9), the
natural quadratic in �n term (2.3) in (2.1) produces a non-trivial contribution to the four-point
amplitude that should be subtracted from (5.4) in order to determine the contribution that
comes solely from the ‘interaction’ �n4 terms in this action. The resulting ‘interaction’ vertex
is then

Ṽ = iλ̃pp′

e(p)e(p′)
+

iλ̃kk′

e(k)e(k′)
+ i[e(p′ − k′) + e(p′ − k)

+ e(p − k′) + e(p − k) − e(p) − e(p′) − e(k) − e(k′)]. (5.10)

It is not immediately clear how to write down explicitly the all-order �n4 term which is consistent
with such a vertex and also generalize the known terms in (2.4) and (2.6); one may need to
use some field redefinitions to simplify it.

As already mentioned, the off-shell form (5.6) of the interaction vertex (5.4) is obviously
not unique: in section 7.2 we shall present an alternative to (5.6) in which non-local factors
are distributed symmetrically between the 4 fields in the vertex and which will be related to
a simple scalar action with a 2-derivative kinetic term whose non-relativistic limit is the BDS
LL model.

5.2. Loop corrections to field-theory S-matrix

Let us now consider quantum corrections to the 2-particle S-matrix using the vertex (5.4) and
the same LL-model propagator as in (2.12) and (3.3), i.e. D(ω, p) = i

ω−e(p)+1+iε . Let us start
with the 1-loop contribution, i.e. (3.16) now with the vertex (cf (3.18)

U(p, p′; q) ≡ V
(

p, p′,
p + p′

2
+ q,

p + p′

2
− q

)
= iλ̃pp′

e(p)e(p′)
+

iλ̃
(

(p+p′)2

4 − q2
)

e
(

p+p′
2 − q

)
e
(

p+p′
2 + q

) .
(5.11)

The energy (ω) integral in the 1-loop graph receives contribution from a single pole; it yields

I1 = −i
∫

dq

2π

[U(p, p′; q)]2

e(p) + e(p′) − e
(

p+p′
2 + q

)− e
(

p+p′
2 − q

)
+ iε

. (5.12)

Note that at large q the vertex U(q) approaches a constant value while the denominator in (5.12)
scales as

√
λq (the propagator of first-order theory scales linearly with inverse momentum)
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implying the absence of power divergences but a potential presence of a logarithmic divergence
(this is the same behaviour as, e.g.,. in the Thirring model). Indeed, expanding the integrand
at large q we get20

I1 = −i
∫

dq

2πq

[
1

2
√

λ̃

(
λ̃pp′

e(p)e(p′)
− 1

)2

+ O

(
1

q

)]
. (5.13)

This discussion was under an implicit assumption that λ was kept finite while one integrated
over the momentum. If instead we first expand the integrand in λ and then do the integration
over q separately at each order in λ we get power divergences but no logarithmic divergences.
Similar result was previously found in [36] in the discussion of quantum corrections coming
from quadratic in fluctuations terms in the generalized LL model (2.1), (2.3). To match the
BDS S-matrix (which is essentially perturbative in λ) we need to adopt this second prescription
and also to drop all power divergences (using, e.g., the dimensional regularization as in [8] as
we already did at low order in λ in (3.16). Equivalently, this means that we should omit this
‘unphysical’ logarithmic divergence of the integral in (5.12) and (5.13).

To evaluate the finite part of the integral we note that, interestingly, the denominator of
the integrand in (5.12) has two zeros, regardless the value of the coupling constant λ̃, at

q2 = 1
4 (p − p′)2. (5.14)

They correspond to simple poles. Only one of them contributes to the evaluation of the
integral, independently of the choice of a contour. The residue at the relevant pole yields

I1pole =
[
U

(
p, p′; p − p′

2

)]2
λ̃e(p)e(p′)

pe(p′) − p′e(p)
, (5.15)

where from (5.11) and (5.2) we get

U

(
p, p′; p − p′

2

)
= 2λ̃ipp′

e(p)e(p′)
= Von-shell(p, p′). (5.16)

In addition to the contribution of the residue at the pole at finite distance, there is also a
contribution from the contour at infinity in the complex q plane. To evaluate it let us set
q = R eiψ and pull out a factor of 1

e(q)
, while expanding the rest of the expression in large R.

We obtain then for the contour integral

λ̃2
∫ 2π

π

dψ

2π

R eiψ

√
1 + λ̃R2 e2iψ

[
1

2

(
λ̃pp′

e(p)e(p′)
− 1

)2

+ O(
f (ψ)

R
)

]
. (5.17)

The O
(

f (ψ)

R

)
terms contain convergent integrals, so that after taking the R → ∞ limit they

vanish. The remaining term which should be formally added to the pole contribution in (5.15)
gives the logarithmically divergent contribution, i.e.

I1 =
[
U

(
p, p′; p − p′

2

)]2
λ̃−1e(p)e(p′)

pe(p′) − p′e(p)
+

i

2π
√

λ̃

(
λ̃pp′

e(p)e(p′)
− 1

)2

log(2R
√

λ̃).

(5.18)

As we have already discussed above, this logarithmic divergence, i.e. the contribution of the
contour integral, should be omitted assuming that the BDS S-matrix and thus the corresponding
LL model should be understood perturbatively in λ.

20 Somewhat surprisingly, the coefficient of the logarithmic divergence happens to have a non-analytic dependence
on λ (cf [36]).
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Figure 1.

Dividing by the symmetry factor 2, and multiplying by the kinematic factor in (3.7) we
thus find the following 1-loop contribution to the 2-particle field-theory S-matrix

1

2
(I1)fin

λ̃−1e(p)e(p′)
pe(p′) − p′e(p)

= − 2p2p′2

[pe(p′) − p′e(p)]2
. (5.19)

This matches exactly the second term in (4.4), i.e. the term in the small momentum expansion
of S̃BDS in (4.6).

One can extend this computation to higher loop bubble graphs (figure f1) as in [8].
Omitting again logarithmic divergences (or all power divergences if one first expands in λ as
discussed above) we finish with the following n-loop contribution to the 2-particle scattering

(In)fin =
[
U

(
p, p′; p − p′

2

)]n+1 [
λ̃−1e(p)e(p′)

pe(p′) − p′e(p)

]n

. (5.20)

Dividing by the symmetry factor 2n and multiplying by the kinematic factor from (3.7) we
finish with the following generalization of (5.19)

1

2n
(In)fin

λ̃−1e(p)e(p′)
pe(p′) − p′e(p)

= 2

[
ipp′

pe(p′) − p′e(p)

]n+1

. (5.21)

Summing up all these bubble diagram contributions gives (as at leading order in λ [8]) a simple
geometric series and thus we finish with the following field-theory S-matrix:

SLL(p′, p) = pe(p′) − p′e(p) + ipp′

pe(p′) − p′e(p) − ipp′ . (5.22)

This is indeed exactly the same as the low-energy limit of the BDS S-matrix, i.e. S̃BDS in
(4.6). It may be viewed as a generalization to all orders in λ of the standard (‘1-loop’)
Landau–Lifshitz model S-matrix obtained in [8].

It is worth stressing that it was not a priori clear that the result of this calculation should
yield (the low-energy limit of) the BDS S-matrix. This conclusion rests on a number of details,
in particular, on the structure of the quadratic term as well as of the quartic vertex in the LL
action, making the agreement non-trivial. In appendix A, we shall generalize the construction
of the quartic vertex in the BDS-related LL action to the SU(1|1) and SL(2) sectors.

The above discussion may be repeated also in the AFS case by starting with the 4-vertex
consistent with (4.22) which we shall explicitly determine in section 7.2. Loop corrections to
the S-matrix of such an LL model produce again a geometric series combining into (4.24).21

However, expression (4.24) does not naturally follow from the AFS S-matrix (4.19) (see
comments at the end of section 4); the important issue of the relation between the low-energy
limit of the exact string S-matrix and the quantum S-matrix (4.24) of the LL model with
tree-level AFS vertex remains to be clarified.
21 Since the vertex corresponding to (4.22) scales with momentum in the same way as in the BDS case here again
we shall get a formal logarithmic divergence of 1-loop integral which should be discarded in the LL framework.
Similar divergences should be automatically cancelling only in the full superstring calculation where both positive
and negative-energy modes will be propagating in loops and also contributions of other bosons and fermions will be
included.
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6. Comments on larger sectors

In the previous sections, we have constructed a field theory whose loop expansion reproduces
the BDS S-matrix. A natural question is whether a similar field theory exists for larger sectors.
Here we shall make few comments on the case of sectors including the SU(2) sector.

6.1. S-matrix of the Landau–Lifshitz model for the SU(1|2) sector

Let us consider, for example, the SU(1|2) sector (containing gauge-theory operators built
out of two chiral scalars and one component of gaugino [44]) where the leading-order LL
Lagrangian is give by [45, 46] (cf (2.1) and (2.3)

L = −iU ∗
i ∂0Ui − iψ∗D0ψ − λ̃

2
[(1 − ψ∗ψ)|D1Ui |2 + D∗

1ψ
∗D1ψ], (6.1)

where Da = ∂a − iCa,Ca = −iU ∗
i ∂aUi and |U1|2 + |U2|2 = 1. Expanding near the vacuum

configuration U1 = 1, U2 = 0 (i.e. �n = (0, 0, 1) for �n = U ∗ �σU ) and ψ = 0 and rescaling
the spatial coordinate by J as in (2.10) we obtain the following action to quartic order in the
fluctuation fields φ and ψ which generalizes (2.12) to the presence of a complex fermion field:

S =
∫

dt

∫ J

0
dx

[
φ∗
(

i∂t +
1

2
λ̃∂2

x

)
φ − ψ∗

(
i∂t − 1

2
λ̃∂2

x

)
ψ − V4(φ, φ∗, ψ,ψ∗)

]
(6.2)

V4 = λ̃

4
[(φ∗2φ′′2 + c.c.) − 2ψ∗ψ |φ′|2 + [(φ′φ∗ − φφ′∗)ψ∗′ψ + c.c.]] +

i

2
(φ̇φ∗ − φφ̇∗)ψ∗ψ.

(6.3)

Here we followed the previously used notation for φ, φ∗ in (2.11) and the notation for the
fermions in [45, 46]; to make the signs in the respective kinetic terms in (6.2) the same it is
sufficient to interchange φ with φ∗ or ψ with ψ̄ .

The time-derivative-dependent interaction term in (6.3) can be converted into a spatial
derivative one by a field redefinition. More precisely, following the logic outlined in
equation (5.8) combined with the transformation φ → φ + 1

2φψψ̄ replaces the time derivatives
in (6.3) with spatial derivatives. The resulting V4 can be simplified to

V4 = λ̃

4
[(φ∗2φ′′2 + c.c.) + 2(ψ∗ψ ′φφ′∗ + c.c.)]. (6.4)

The solutions to the free fermion equations of motion may be chosen as

ψ∗(x, t) =
∫

dp√
2π

bp e−iωpt+ipx, ψ(x, t) =
∫

dp√
2π

b∗
p eiωpt−ipx (6.5)

with ωp being the same as in (3.2) and {bp, b∗
p′ } = δ(p−p′) (this choice assures the positivity

of energy). Then the fermionic propagator is the same as the bosonic one (3.3).22

In addition to the bosonic vertex (2.16) that we had in the SU(2) sector, now we have also
a 2 boson–2 fermion vertex shown in figure 2(a), where the dashed line denotes the fermion.
Suppose we are interested in the bosonic sector of the S-matrix where the in and out particles

are bosons as in the SU(2) case. The tree-level scattering matrix is then the same as in the
SU(2) sector, while at 1-loop level we could get an additional contribution from the fermionic
loop in figure 2(b). However, this contribution vanishes since, like the bosonic propagator,

22 As already mentioned, an alternative way to make the analogy with the free bosonic theory manifest is to switch
ψ∗ ↔ ψ .
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Figure 2. (a) Elastic scattering of a bosonic and fermionic magnon; (b) potential fermionic
correction to the scattering of bosonic magnons.

the fermionic propagator is also retarded (see also [8]). This argument extends also to higher
loop contributions.

We conclude that the bosonic sector of the S-matrix of the SU(1|2) LL model is exactly
the same as that of the SU(2) LL model. This appears to be in agreement with the structure
of the corresponding Bethe ansatz S-matrix.

6.2. Absence of mixing of magnon S-matrices

The decoupling observed in the previous subsection for the all-loop scattering of bosons and
fermions is not restricted to the SU(1|2) sector. It is possible to see that in the context of the
LL-type models, all larger sectors containing SU(2) have the same property: the quantum LL
S-matrix with external states from the SU(2) sector is simply that of the quantum SU(2) LL
model.

There are two essential ingredients which lead to this type of decoupling. First, the
scattering of magnons is flavour-diagonal. In the case of either the ‘gauge’ or ‘string’ Bethe
ansatz the magnons are associated with simple roots of PSU(2, 2|4) and scatter following its
Dynkin diagram [5]. As a consequence, a field theory realizing the magnon scattering should
have a very particular form of the 4-field interaction terms. Since the magnons are associated
with the nodes of the Dynkin diagram, we may assign to them Abelian conserved charges.
Each term in the magnon Lagrangian is neutral with respect to these charges; thus each term
must contain an equal number of magnon fields and their complex conjugates (in particular,
cubic vertices are prohibited).

Second, the magnons around the ferromagnetic ground state of any spin chain are non-
relativistic. Therefore, it is always possible to choose the vacuum of the field theory describing
them in such a way that it is annihilated by holomorphic fields. Hence all propagators are
retarded: 〈φ∗(t, x)φ(t ′, y)〉|t ′<t = 0.

It follows then that at the tree-level there is no term in the effective field-theory Lagrangian
which corresponds to annihilation of some type of magnon and pair-production of a different
kind of magnon. Instead, all terms describe elastic scattering (as in figure 2(a), showing the
scattering of a boson and a fermion). Also, loop contributions containing different sorts of
magnons than those on external legs vanish. The conclusion is that magnon scattering in each
unit rank sector does not receive corrections from other sectors.

It is worth mentioning that if the magnons were charged under more than one Cartan
generator, then cubic vertices would be allowed in the effective field-theory action, and, in
spite of the propagators being retarded, there could exist, e.g., a non-trivial fermion contribution
to the scattering of bosons.

This pattern is obviously different from what is found in analogous string-theory second-
derivative sigma model computations, where loop diagrams involving all states provide non-
trivial contributions to diagrams with external states from the SU(2) sector (and, in fact, to all
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unit-rank sectors). These contributions are crucial, in particular, for the cancellation of 2d UV
divergences and presumably for obtaining the complete dressing phase θ .

7. The relation to string theory

Our motivation for reconstructing the field theory whose scattering matrix reproduces the
asymptotic S-matrix of the spin chain (1.1) is the expected close relation of this S-matrix
with string theory in AdS5 × S5. The field-theory action we discussed above is a Landau–
Lifshitz-type non-relativistic action which is first order in time derivative. At the same time,
the AdS5 × S5 string action expanded near the point-like string moving along the S5 geodesic
has a two-dimensional relativistically invariant kinetic term [49, 25] and the interaction terms
which are not relativistically invariant [12, 13, 50, 51].

To relate such a second-order action for ‘BMN magnons’ to first-order LL-type action
(2.12) for ‘spin-chain magnons’ it is necessary to eliminate half of the modes in the former
action—the negative-energy modes. It is also necessary to eliminate time-derivative terms
from the interaction part.

A general systematic procedure (not assuming the expansion of �n near the (0, 0, 1)

vacuum) for relating the classical string action on R × S3 to generalized LL action (2.1)–(2.5)
was presented in [31]. It was based on the ‘fast-string’ expansion (i.e. it assumed that the
time derivatives of ‘transverse’ string profile �n are small compared to spatial ones) and on
performing field redefinitions to eliminate time derivatives from the interaction terms. This
determined the exact quadratic term in the action and also few leading coefficients a1, b1, b2, b3

in (2.4) and (2.5) (see (2.7) and (2.9). The ‘string’ values of these coefficients are indeed
consistent with the string AFS-type Bethe ansatz [36].

While directly extending the approach of [31] to determine the coefficients of higher order
terms in the corresponding effective LL action appears to be complicated, expanding near the
vacuum �n = (0, 0, 1) and concentrating only on the quartic interaction vertex one is able to
fix its exact form as we shall do in section 7.2.

We shall find that it matches exactly the vertex extracted from the tree-level part of the
low-energy limit of the AFS S-matrix (4.22). This may be expected, given that the AFS Bethe
ansatz was obtained by discretizing [6] the classical R ×S3 string Bethe equations of [32], but
it gives a hope of more direct understanding of the correspondence between quantum string
corrections and the structure of string S-matrix (cf also [9]).

Below we will first explain how one can relate the LL model with first-order kinetic term
and the vertex of the type of (5.6) and (5.2) or its AFS analogue to an interacting 2d action with
a relativistic kinetic term. We shall then see that there is indeed a close connection between
the string sigma model action on R × S3 and the LL action of the type (2.12), (5.6), which
generalizes the leading-order classical correspondence described in [30, 31] to all orders in λ

(but only for quartic interaction terms).

7.1. A model scalar field theory

Let us start with an illustrative example of an effective massive two-derivative field theory
obtained, for example, by expanding the string sigma model around some semiclassical
solution23. Such an effective action will naturally have a kinetic term with two space and two

23 It may have two possible origins. First, we may think of integrating out all string fields except few which will
appear in the effective action. Such an action would necessarily exhibit divergences which should disappear once
quantum effects of the modes present in this action are also included (the total quantum string theory is expected
to be finite). This action should not be interpreted in the Wilsonian sense, as the remaining fields may be equally
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time derivatives and thus, unlike the LL-type models, will contain both positive and negative-
energy modes. As already mentioned, the latter should be eliminated in order to bring it to
the LL form. Below we will describe how this can be done and as a result reproduce some
characteristic features of the LL actions discussed in the previous sections.

One such feature is the occurrence of inverse powers of e(p) =
√

1 + λ̃p2 in the quartic
vertex. While the precise structure of the vertex depends on the details of the effective action,
the presence of inverse powers of e(p) appears to be directly related to the elimination of the
negative-energy modes.

Let us start with a generic complex scalar Lagrangian,

L = −φ∗(∂2
t − ∂2

x + m2
)
φ − V̂4(∂

(i))φ∗(z1)φ
∗(z2)φ(z3)φ(z4) + · · · . (7.1)

Here the ellipsis denote terms involving more than four fields (which are presumably fixed by
the integrability of the theory). ∂(i) collectively denote space and time derivatives acting on
the field at position zi = (ti , xi).24

Given action (7.1) we may compute the corresponding tree-level S-matrix by solving the
corresponding classical equations with the free in-field boundary condition. The free field can
be decomposed into the positive- and negative-energy modes

φ = φ+ + φ−, (7.2)

which will then enter also the nonlinear solution and thus the resulting S-matrix. Since we
will be interested only in the 2-body S-matrix, i.e. in the quartic vertex, we may formally use
the decomposition (7.2) directly in the action.

The kinetic operator can be factorized as

∂2
t − ∂2

x + m2 = −D+D− (7.3)

D±(∂) ≡ i∂t ∓ e(i∂x), e(i∂x) ≡
√

m2 − ∂2
x , (7.4)

so that D+φ− = O(φ3),D−φ+ = O(φ3). Suppose we consider diagrams where only φ+ and
φ∗

+ appear on external lines and ask which field theory with first-order kinetic term D− would
reproduce the same S-matrix. To arrive at such action from (7.1) we may supplement the
decomposition (7.2) by a field redefinition

φ̂± =
√

D∓(∂)φ±. (7.5)

Then (7.1) expressed in terms of φ̂± becomes

L = φ̂
∗
+

(
i∂t −

√
m2 − ∂2

x

)
φ̂+ − V̂4(∂

(i))√
D−(∂(1))D−(∂(2))D−(∂(3))D−(∂(4))

× φ̂
∗
+(z1)φ̂

∗
+(z2)φ̂+(z3)φ̂+(z4) + terms containing φ̂−, φ̂

∗
−. (7.6)

At the tree-level ignoring the dependence on φ̂−, φ̂
∗
− means consistently truncating the S-

matrix to the sector of the positive-energy modes. The first two terms in (7.5) then give a

massive as those which have been integrated out at the first stage. Rather, this may be viewed as a way to exactly
account for the quantum effects of some of the fields while treating others as classical. Alternatively, we may think of
this effective action in the usual 1PI sense. Then all fields are allowed to propagate in the loops so that this effective
action should be free of 2d UV divergences. As usual, the exact quantum 2d S-matrix is then the tree-level S-matrix
of such an effective action.
24 While generically non-local, the quartic interaction term typically can be expanded in series of local operators of
increasing dimension. An exception is the case in which some of the world-sheet fields which have been eliminated
are massless around the chosen background.
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first-order action that resembles the LL actions discussed above (cf (2.12). However, there is
an obvious difference in that the interaction term may contain time derivatives.

To address this issue let us note that the truncation to positive energy modes implicitly
assumes that the resulting action is to be used in the low-energy regime (ω � m), where the
excitations of the field φ can be thought of as non-relativistic. It is therefore reasonable to
expand the D− factors in the interaction vertex in (7.6) in ∂t

m
. Then we can further eliminate

the time-derivative-dependent terms in the vertex using field redefinitions (as in the relation
between the string sigma model and the LL action in [31]), i.e. using that on the free equations
of motion i∂t φ̂+ = e(i∂x)φ̂+. Equivalently, we may just replace i∂t by

√
m2 − ∂2

x in the quartic
interaction term. We then finish with the following effective Lagrangian for φ̂+

L � φ̂
∗
+ [i∂t − e(i∂x)] φ̂+ − V4, (7.7)

V4 = V̂4
[−ie

(
i∂(i)

x

)
, ∂(i)

x

]
4
√

e
(
i∂(1)

x

)
e
(
i∂(2)

x

)
e
(
i∂(3)

x

)
e
(
i∂(4)

x

) φ̂∗
+(z1)φ̂

∗
+(z2)φ̂+(z3)φ̂+(z4). (7.8)

Comparing this to the on-shell vertex (5.2) written in an equivalent symmetric form

V(p, p′; k, k′) = iλ̄
pp′ + kk′

√
e(p)e(p′)e(k)e(k′)

, (7.9)

we observe its close similarity with the vertex (7.7) extracted from the BDS S-matrix provided
we choose V4 in a remarkably simple local form

V̂4(∂
(i)) ∝ [

∂(1)
x ∂(2)

x + ∂(3)
x ∂(4)

x

] 4∏
i=1

δ(2)(zi − z). (7.10)

There is still a difference in the structure of the kinetic terms in (7.7) and in (2.12): apart from
the replacement of m2 by λ̃−1 (and a rescaling of t) here we are missing the subtraction of
−1 in the dispersion relation (3.2). This can be easily fixed by applying a field redefinition
φ = e−imt φ̃, where φ̃+ will now be a ‘slow’ field. This mimicks the ‘fast string’ expansion
(based on isolating the fast angle variable) done in relating the LL action to string theory action
in [31] (see also [47, 48]). Then

−φ∗(∂2
t − ∂2

x + m2)φ = 2imφ̃∗∂t φ̃ − φ̃∗(∂2
t − ∂2

x )φ̃ (7.11)

φ̂
∗
+(i∂t −

√
m2 − ∂2

x )φ̂+ = φ̃∗
+

[
i∂t − (√

m2 − ∂2
x − m

)]
φ̃+ (7.12)

and so the transformation from the relativistic to non-relativistic theory can be viewed as a
standard non-relativistic expansion.

7.2. Relation between string sigma model on R × S3 and the AFS S-matrix

Let us now turn to string theory and explain how the above action appears in the context of
the discussion of [31]. There one started with the classical string action on R × S3 with the
metric ds2 = −dt2 + [dα + C(n)]2 + d�n d�n, performed 2d duality α → α̃, and then fixed the
‘uniform’ gauge: t = τ, α̃ = J√

λ
σ , i.e. pα = J√

λ
= const.25 The resulting action then takes

25 The choice of the isometry direction α in fixing the uniform gauge corresponds to a particular choice of a charge
that is assumed to be distributed homogeneously along the string to match the spin-chain picture [31]. In the gauge
used in [31, 48] that isometry direction corresponded to the total spin J = J1 + J2 in the SU(2) sector, while in the
uniform gauge used in [58] the corresponding charge was single spin component J1 (i.e. α was the angle in one of
the three rotation planes).
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the form (2.1); after the redefinition (2.10) of the world-sheet coordinate σ → x = J
2π

σ the

string Lagrangian [31] takes the J -independent form
(
S = ∫

dt
∫ J

0 dx L
)

L = Ct −
√[

1 − 1

4
(∂t �n)2

] [
1 +

λ̄

4
(∂x �n)2

]
+

λ̄

16
(∂t �n · ∂x �n)2. (7.13)

Expanding (7.13) near �n = (0, 0, 1) and using (2.11) we get for the terms quartic in fluctuation
field (cf (2.12) and (2.16)

L = iφ∗∂tφ − 1
2φ∗(∂2

t − λ̄∂2
x

)
φ + 1

4 [φ∗2(φ̇2 − λ̃φ′2) + c.c.]

+ 1
8 (φ̇∗2 − λ̃φ′∗2)(φ̇2 − λ̃φ′2) + O(φ6). (7.14)

We can now apply to this action the procedure from the previous subsection to read off the
quartic vertex in the corresponding ‘non-relativistic’ action.

The first step is to replace the time derivatives in the quartic interaction term in (7.14)
with their expression following from the free equations of motion (the result is the same as
doing field redefinitions and ignoring higher than quartic terms):

∂tφ → −i[e(i∂x) − 1]φ, e(i∂x) ≡
√

1 − λ̃∂2
x . (7.15)

The resulting quartic vertex (5.3) is then easily found from (7.14) in momentum representation:

V(p, p′; k, k′) = i
Ṽ4(p, p′, k, k′)√

e(p)e(p′)e(k)e(k′)
, (7.16)

Ṽ4 = λ̃(pp′ + kk′) − [e(p) − 1][e(p′) − 1] − [e(k) − 1][e(k′) − 1]

+
1

2
(λ̃pp′ − [e(p) − 1][e(p′) − 1])(λ̃kk′ − [e(k) − 1][e(k′) − 1]). (7.17)

Upon multiplication of this by the energy–momentum delta-function in (3.5) and (3.7)
(allowing us to set k, k′ to p, p′ or p′, p) we then reproduce precisely the ‘tree-level’ part of
the low-energy AFS S-matrix in (4.22) and (4.23):

V(p, p′, k, k′)
λ̃−1e(p)e(p′)

pe(p′) − p′e(p)
δ+(p, p′, k, k′) = (

S
SU(2)
string

)
treeδ+(p, p′, k, k′) (7.18)

(
S

SU(2)
string

)
tree = 2iF(p, p′)

pe(p′) − p′e(p)
. (7.19)

Following the procedure of the previous subsection, the resulting non-relativistic effective
Lagrangian corresponding to (7.14) is (cf (7.7) and (2.12)

L = φ∗[i∂t − (√
1 − λ̃∂2

x − 1
)]

φ − V4(φ) + O(φ6), (7.20)

V4 = 1

4

{(
1√

e(i∂x)
φ∗
)2
[(

e(i∂x) − 1√
e(i∂x)

φ

)2

+ λ̃

(
∂x√
e(i∂x)

φ

)2
]

+ c.c.

}

− 1

8

[(
e(i∂x) − 1√

e(i∂x)
φ∗
)2

+ λ̃

(
∂x√
e(i∂x)

φ∗
)2
][(

e(i∂x) − 1√
e(i∂x)

φ

)2

+ λ̃

(
∂x√
e(i∂x)

φ

)2
]

.

(7.21)

Expanding (7.20) in powers of spatial derivatives one can check that it agrees (modulo field
redefinitions like that below (5.6) with the leading terms in the LL vertex (2.16) for the ‘string’
value of the coefficient b2 in (2.9).
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V4 in (7.21) is the ‘string’ or AFS analogue of the exact off-shell BDS field-theory
vertex (5.6). To make the analogy with (7.21) more explicit we can represent the on-shell
BDS vertex (5.4) in a more symmetric form (equivalent on-shell to (5.6)

(V4)BDS = λ̃

4

[(
1√

e(i∂x)
φ∗
)2 (

∂x√
e(i∂x)

φ

)2

+ c.c.

]
. (7.22)

This is simply one of the terms present in (7.21). It is then also clear which is the analogue of
the scalar action (7.14) that would lead to ‘non-relativistic’ action (7.20) with such a quartic
term:

LBDS = iφ∗∂tφ − 1

2
φ∗(∂2

t − λ̄∂2
x )φ − λ̃

4

(
φ∗2φ′2 + c.c.

)
+ O(φ6). (7.23)

Omitting here the quadratic term with two time derivatives leads to the standard (leading order)
LL action. Since this affects only the quadratic terms, this relation is perfectly consistent with
the fact that the BDS ansatz is the minimal (and natural) generalization of the XXX1/2 spin
chain, affecting only the dispersion relation. The interaction term in (7.23) is invariant under
time-dependent U(1) rotations, so we can also put the kinetic term in (7.23) in the standard
relativistic form by applying the rotation φ = eitϕ that induces instead a mass term (cf (7.11)

LBDS = −1

2
ϕ∗(∂2

t − λ̄∂2
x − 1

)
ϕ − λ̃

4
(ϕ∗2ϕ′2 + c.c.) + O(ϕ6). (7.24)

This ‘BDS’ action (7.23) has obviously quite different structure from (7.14) that follows from
string theory.

7.3. Strings on AdS3 × S1, AFS-type S-matrix in the SL(2) sector and the universality
of the dressing phase

An important conclusion of the previous subsection is that the tree-level ‘2-magnon’ S-matrix
following from the string action on R × S3 is indeed the same as the low-energy limit of the
AFS Bethe ansatz S-matrix (4.22) in the SU(2) sector. This provided a direct relation between
the classical string theory and the low momentum limit of the AFS ansatz. An obvious question
is whether this relation can be extended to other sectors. The SL(2) sector is of particular
interest: a successful comparison would give a non-trivial check of the suggestion [5, 10] that
at the classical level in string theory the dressing phase σ 2 = eiθAFS is universal to all sectors
of the theory.

The construction of the low momentum limit of the BDS-type scattering matrix in the
SL(2) sector proceeds as in section 4 and we postpone the details to appendix A.4. Assuming
that the dressing phase is universal, equations (A.20) and (4.17) imply that the ‘tree-level’ part
of the low-energy AFS-type S-matrix in the SL(2) sector (i.e. the counterpart of (4.22) and
(4.23) in the SU(2) sector) is

(S̃SL(2))tree = i

[
(p − p′) − p2 + p′2

pe(p′) − p′e(p)

]
+ iθ̃AFS

= − ipp′

pe(p′) − p′e(p)
[1 + e(p)e(p′) − λ̃pp′]. (7.25)

In the spirit of the previous subsection, this expression should be compared to the world-sheet
tree-level scattering matrix of ‘magnons’ (small string fluctuations near the BMN vacuum in
the parametrization (2.11), i.e. the S1 geodesic) on AdS3 × S1. We shall compute the latter
below.
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It is worth emphasizing that the notion that the dressing factor σ 2 is universal has a
meaning only under the assumption that the vacua in the various sectors are chosen to be the
same26. This means, in particular, that to extract the relevant vertex it is necessary to use the
uniform gauge [31, 58] as in our discussion of the SU(2) sector (i.e. t = τ, pα = const, or
α̃ = J√

λ
σ = x√

λ̃
, where α now is the coordinate of S1 from S5) and to consider small string

fluctuations near the S1 geodesic.
The corresponding gauge-fixed string action on AdS3 × S1, i.e. the counterpart of (7.13),

was constructed in [56] (see section 2 there). Using slightly different parametrization than
in [56] (see [54]) the metric of AdS3 × S̃1 (after 2d duality α → α̃) may be written as
ds2 = −[dt + B(��)]2 + d�� d�� + dα̃2. Here �� is a pseudo-unit 3-vector

�i�jηij = −1, ηij = diag(−1, 1, 1), (7.26)

with a parametrization in terms of a single complex scalar convenient for an expansion near
the vacuum �� = (1, 0, 0) being

�� = (
1 + 2|φ|2,−i(φ − φ∗)

√
1 + |φ|2, (φ + φ∗)

√
1 + |φ|2). (7.27)

The connection 1-form B (the analogue of C in (2.1) and (7.13) projected on the world sheet
has components

Ba = −1

2

∫
dξ εijk�

i∂ξ �
j ∂a�

k, Ba = �2∂a�
3 − �3∂a�

2

2(1 + �1)
= −1

2
(φ∗∂aφ − φ∂aφ

∗).

(7.28)

Then the gauge-fixed string action on AdS3 × S1 [56] becomes

S = −
∫

dt

∫ J

0
dxL, L = √−h,

h =
[
−(1 + Bt)

2 +
1

4
(∂t

��)2

] [
1 − λ̃B2

x +
λ̃

4
(∂x

��)2

]
− λ̃

[
Bx(1 + Bt) − 1

4
∂t

�� · ∂x
��
]2

.

(7.29)

This action has a form of the Nambu action in a static gauge, but, in contrast to (7.13), without
a WZ-type term (the analogue of the latter, i.e. Bt , here comes out of the square root term
upon ‘fast-string’ expansion leading to the LL action [56]).

With these preliminaries, we are ready to extract the four-point vertex following the same
steps as in section 7.1. Expanding (7.29) to quartic order in the fluctuation field φ gives

L = iφ∗∂tφ − 1
2φ∗(∂2

t − λ̄∂2
x

)
φ − 1

4 [φ∗2(φ̇2 − λ̃φ′2) + c.c.] + 1
4 [iφ∗φ̇∗(φ̇2 − λ̃φ′2) + c.c.]

+ 1
8 (φ̇∗2 − λ̃φ′∗2)(φ̇∗2 − λ̃φ′∗2) + O(φ6). (7.30)

The difference compared to the Rt × S3 case (7.14) is in the change of sign of the second-
derivative quartic term (that has to do with the opposite sign of the curvature of AdS3 compared
to S3) and also in the presence of the 3-derivative term. From here it follows immediately that
the quartic vertex for ‘magnons’ with first-order dispersion relation, i.e. the analogue of (7.16)
and (7.17), is

VSL(2)(p, p′; k, k′) = i
ṼSL(2)

4√
e(p)e(p′)e(k)e(k′)

, (7.31)

26 In multi-component integrable field theories, a change of vacuum state typically entails a change of the phase of
the scattering matrix. Consequently, changing the vacuum state of only one sector induces a phase change of the
scattering matrix of only that sector and thus a relative phase compared to the other sectors.
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ṼSL(2)
4 = −λ̃(pp′ + kk′) + [e(p) − 1][e(p′) − 1] + [e(k) − 1][e(k′) − 1]

+
1

2

(
λ̃pp′ − [e(p) − 1][e(p′) − 1]

) (
λ̃kk′ − [e(k) − 1][e(k′) − 1]

)
− 1

2
[([e(p) − 1] + [e(p′) − 1])

(
λ̃kk′ − [e(k) − 1][e(k′) − 1]

)
+ (p, p′) ↔ (k, k′)]. (7.32)

The vertex VSL(2) simplifies considerably upon multiplication by the delta-function (3.5)
enforcing the energy–momentum conservation. It follows then that the tree-level S-matrix of
this SL(2) sigma model, i.e. the analogue of (7.18) and (7.19) in the SU(2) case, is

VSL(2) λ̄−1e(p)e(p′)
pe(p′) − p′e(p)

δ+(p, p′, k, k′) = (
S

SL(2)
string

)
treeδ+(p, p′, k, k′),

(
S

SL(2)
string

)
tree = ipp′ λ̄pp′ − e(p)e(p′) − 1

pe(p′) − p′e(p)
.

(7.33)

Remarkably, this is indeed the same as the ‘tree-level’ part (7.25) of the low-energy AFS-type
S-matrix in the SL(2) sector27.

We have therefore shown, in a low energy and strong coupling (classical string)
approximation that the dressing phase relating the gauge-theory Bethe ansatz and the world-
sheet S-matrix is the same in the SU(2) and the SL(2) sectors. This provides a non-trivial test
of the proposed [4, 5, 10] generalization of the SU(2) AFS ansatz to other sectors.

7.4. Fermionic SU(1|1) truncation of the superstring action and AFS-type S-matrix

As a further test of the universality of the dressing phase we will now discuss the tree-level
S-matrix [8] of the SU(1|1) truncation [53] of the AdS5 × S5 superstring action and its
comparison with the corresponding phase shift in the AFS-type Bethe ansatz in [4, 5]. The
matching of the two S-matrices in the low-energy limit was already noted in [8], but since our
perspective is somewhat different and also to clarify some conceptual issues that seem to have
more general importance we shall discuss this case in detail below.

Using the low-energy limit of the BDS-type S-matrix in the SU(1|1) sector from appendix
A.3 (A.13) and assuming the universality of the AFS phase we find as in (7.25)

(S̃SU(1|1))tree = i

2
(p − p′)

[
1 − p − p′

pe(p′) − p′e(p)

]
+ iθ̃AFS

= i

2
(p[e(p′) − 1] − p′[e(p) − 1]). (7.34)

This is the expression we would, by analogy with the bosonic sector cases, expect to get as a
tree-level S-matrix in the corresponding sector of the superstring theory.

Similarly to the truncation of the string theory to the SU(2) and SL(2) sectors, the
AdS5 × S5 world-sheet sigma model may be consistently truncated [46, 53] to a fermionic
model [53] containing the AdS5 time coordinate t, two fermionic components �1, �2 and a

27 As in the SU(2) sector, this conclusion about the relation of the low-energy AFS S-matrix and classical string
sigma model S-matrix is of course consistent with the ‘derivation’ of the SL(2) dressing phase [4] from the classical
string model on AdS3 ×S1 by discretizing the integral equation [8] describing classical solutions of AdS3 ×S1 string
sigma model.
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boson α parametrizing an S1 direction in S5. One may then fix the uniform gauge condition
[20, 53], i.e. t = τ, pα = J√

λ
.28

Note that in contrast to the previous two cases of the bosonic sectors where J in the
uniform gauge corresponded to the length of the spin chain on the gauge-theory side (J was
total spin J1 + J2 in the SU(2) case in (7.13) and the U(1) R-charge in the SL(2) case in
(7.29) here J is the bosonic R-charge while the length of the chain is L = J + 1

2M where M is
the number of fermionic impurities [44, 59] (the corresponding operators are Tr(ZL−MψM)).
This suggests a subtlety in the identification of the spin chain and the world-sheet S-matrices
in this case (which was indeed already mentioned in [4, 8]).29 Indeed, the S-matrix on the
spin-chain side has a meaning only in the context of a specific choice of a ground state and
its quantum numbers so the identification of the length on the lhs of the Bethe equations (1.1)
with the length of the world-sheet spatial direction is important30.

Using the consistent truncation of [53], T-dualizing the coordinate α → α̃ and fixing the
gauge t = τ and α̃ = J√

λ
σ = x√

λ̃
one finds the fermionic analogue of the bosonic actions in

(7.13) and (7.29), i.e. the action of [53] with each spatial derivative ∂x having an additional
factor of

√
λ̃

L = −i�̄
(
ρ0∂t +

√
λ̄ρ1∂x

)
� + �̄� − 1

4

√
λ̄εab(�̄∂a��̄ρ3∂b� − ∂a�̄�∂b�̄ρ3�)

+ 1
8

√
λ̄εab(�̄�)2∂a�̄ρ3∂b�. (7.35)

Here � is a two-component spinor (formed from 2 components of the original fermions of the
AdS5 × S5 superstring), �̄ = �†ρ0 and

ρ0 =
(−1 0

0 1

)
, ρ1 =

(
0 i
i 0

)
, ρ3 = ρ0ρ1. (7.36)

Like the bosonic actions (7.13) and (7.29), this nonlinear fermionic action is classically
integrable [53] but should not be expected to be meaningful at the quantum level (in particular,
it is not renormalizable; cf [8]): to compute quantum corrections one is to include couplings to
all other superstring modes. As in the previous bosonic cases, here we will be interested only
in the tree-level 2-particle S-matrix corresponding to (7.35) (where the six-point interaction
term may thus be dropped out).

As was pointed out in [46], to compare the truncation of the superstring action to the
spin-chain side, the SU(1|1) spin-chain fermionic magnon should be identified with one of

the two components of the fermion field � = (
�1

�2

)
. Our aim is thus to compute the tree

S-matrix for this component.
Written explicitly in terms of �1 and �2, the Lagrangian (7.35) is, up to the relevant

fourth order in the fields,

L = −�∗
1 (i∂t + 1)�1 − �∗

2 (i∂t − 1)�2

+
√

λ̃
[
�∗

2 ∂x�1 − 1
2�∗

1 �∗
2 (i∂t�1∂x�1 + i∂t�2∂x�2) + h.c.

]
+ O(�6) (7.37)

28 In the more general sector of string theory, the analogous gauge may be fixed by picking the isometric direction
α on S5 corresponding to the large R-charge, rescaling all other coordinates by eiqj α such that they become neutral
under the U(1) transformation, dualizing α → α̃ and setting t = τ, α̃ = J√

λ
σ .

29 Let us note also that the dependence of the form of the ‘string’ Bethe ansatz on a choice of world-sheet gauge was
emphasized in [12, 60].
30 In general, the gauge choice is also related to the issue of identification of the vacua; the choices of vacua in the
three rank-1 sectors are formally the same—the vacuum is the BMN one; however, its embedding in the full string
theory may appear to be different.
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Since �1 and �2 have opposite signs of mass terms, applying the redefinition like that in
(7.11) or that relating (7.24) and (7.23), i.e.

�1 = eit ζ, �2 = eitχ, (7.38)

we make ζ ‘massless’ while χ more massive, and thus can naturally integrate out the latter.
This rotation of the fluctuation fields is necessary in order to relate the truncated string action to
a ‘non-relativistic’ LL-type action for the fermionic ‘magnons’ [46] (cf (6.2). Similar rotation
was automatically incorporated in the choice of gauge fixing and field parametrization in the
SU(2) (7.13) and SL(2) (7.29) sectors where (7.14) and (7.30) contained linear in time-
derivative ‘friction’ term. For comparison, such a term would be absent if one would start
with the BMN-type action for bosonic fields31.

Solving the equation for χ gives

χ = −
√

λ̃∂x

2 − i∂t

ζ + O(ζ 2) (7.39)

and thus the effective Lagrangian for ζ becomes32

L(ζ ) = −ζ ∗
(

i∂t − λ̃∂2
x

2 − i∂t

)
ζ

− 1

2
λ̃

[
ζ ∗ ∂x

2 + i∂t

ζ ∗
(

(1 − i∂t )ζ ∂xζ + λ̃
(1 − i∂t )∂x

2 − i∂t

ζ
∂2
x

2 − i∂t

ζ

)
+ h.c.

]
+ · · · (7.40)

The dispersion relation for ζ is thus i∂tζ = (
1 ±

√
1 − λ̃∂2

x

)
ζ + O(ζ 3). Using that

i∂t − λ̃∂2
x

2 − i∂t

=
(

i∂t +
√

1 − λ̃∂2
x − 1

)
P 2, P 2 ≡

1 +
√

1 − λ̃∂2
x − i∂t

2 − i∂t

, (7.41)

we can then find the effective Lagrangian for the positive-energy part of ζ with the expected
dispersion relation by redefining

ζ = P −1ψ (7.42)

getting (cf (6.2) and (7.20)

L(ψ) = −ψ∗(i∂t +
√

1 − λ̃∂2
x − 1

)
ψ − 1

2
λ̃

[
P̄ −1ψ∗ P̄ −1∂x

2 + i∂t

ψ∗
(

(1 − i∂t )P
−1ψ∂xP

−1ψ

+ λ̃
(1 − i∂t )∂xP

−1

2 − i∂t

ψ
∂2
xP −1

2 − i∂t

ψ

)
+ h.c.

]
+ · · · (7.43)

where P̄ = P †.
The on-shell 4-vertex corresponding to this Lagrangian (found by eliminating the

time derivatives in the quartic term using the free equation of motion for ψ , so that
i∂t → 1 − e(i∂x), P

−1 →
√

1+e(i∂x)√
2e(i∂x)

) is (cf (7.16) and (7.17) and (7.31) and (7.32):

VSU(1|1)(p, p′; k, k′) = i

2

ṼSU(1|1)(p, p′; k, k′) + ṼSU(1|1)(k, k′;p, p′)√
e(p)e(p′)e(k)e(k′)

,

ṼSU(1|1)(p, p′; k, k′) = − λ̃

4
A(k, k′)

[p′ − p − A(p, p′)]
[
(1 + e(k))(1 + e(k′)) − λ̃kk′]

√
(1 + e(p))(1 + e(p′))(1 + e(k))(1 + e(k′))

(7.44)

31 For example, in the case of Rt × S3 we gauge-fixed the ‘fast’ coordinate which was the combined angle in the two
rotational planes (corresponding to the total spin J1 + J2). Had we fixed, as in the BMN fluctuation case, the angle in
only one rotation plane, we would need to apply an extra time-dependent rotation to the fluctuation fields.
32 An equivalent (up to change of notation) quadratic part of the action appeared in the same context in [46].
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where A(k, k′) ≡ ke(k′)− k′e(k). Multiplying this vertex (7.44) by the kinematic factor leads
as in (7.18) and (7.33) (with δ+ → δ− as in [8]) to a very simple result for the S-matrix

VSU(1|1) λ̄−1e(p)e(p′)
pe(p′) − p′e(p)

δ−(p, p′, k, k′) = (
S

SU(1|1)
string

)
tree(p

′, p)δ−(p, p′, k, k′),(
S

SU(1|1)
string

)
tree = i

2
[pe(p′) − p′e(p)].

(7.45)

This is the same tree-level S-matrix as one finds from [8] by interpreting their result for the
S-matrix of the model of [53] in terms of a ‘non-relativistic’ single-component fermionic field
theory.

The string-theory result (7.45) is different from the low momentum limit of the AFS-type
S-matrix for the SU(1|1) sector (7.34) by a λ-independent term i

2 (p′ − p). The difference is
actually the necessary correction to the scattering phase appearing from expressing the Bethe
equations in terms of the R-charge J rather than the length L = J + 1

2M of the chain [4, 8].
On the string-theory side, this shift may be attributed to a choice of the uniform gauge that
fixed J instead of L.33 We conclude that the direct string-theory computations of the ‘magnon’
S-matrix confirm that the non-trivial λ-dependent dressing phase relating the ‘gauge’ and
‘string’ Bethe ansätze is universal for all the rank-1 sectors.

8. Outlook

One important lesson of the present paper is the following. To compare the spin-chain Bethe
ansatz phase shift for magnons near the ferromagnetic vacuum which have ‘non-relativistic’
first-order dispersion relation to string theory one should re-organize the string-theory S-matrix
for BMN-type modes (which originally have relativistic dispersion relation) into the S-matrix
for an effective field theory of the positive-energy modes as discussed in section 7.1.

A potential application of the relation between the low-energy limit of the AFS-type
S-matrix and the ‘non-relativistic’ form of the classical string action we have investigated in
this paper is a possibility of shedding light on the connection between the structure of string
α′ ∼ 1√

λ
corrections and subleading terms in the string phase in (1.2) and (4.11).

The are several open issues that require analysing the complete world-sheet theory at the
quantum level. One is relation to quantum corrections within the Landau–Lifshitz framework,
e.g., whether (part of) higher order terms in (4.20) may be interpreted as quantum-loop
corrections in the LL model (7.20), (7.21). Still, the ‘non-causal’ loops of the LL model do
not involve negative-energy modes which are present in the full string loop contributions (where
not only quartic but also higher order vertices will be contributing to 2-particle S-matrix), so
to account for the latter one needs to go beyond the specific low-energy approximation to the
AFS scattering matrix we considered in section 4.
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Appendix A. Effective field-theory vertices in SL(2) and SU (1|1) sectors

In this appendix, we shall generalize the construction of the effective 2d field-theory vertex
from BDS SU(2)S-matrix to the other two rank-1 sectors. The same can be repeated also for
the AFS-type case (using the general expressions in [5]).

A.1. Bethe ansatz equations

Let us start with recalling the S-matrices that enter the BDS-type Bethe ansätze for
SU(2), SU(1|1) and SL(2) sectors [3–5]. The Bethe ansatz equations can be written in
the form [5]

eipj L =
M∏

k �=j

Sη(pj , pk), Sη(pj , pk) =
(

x+
j − x−

k

x−
j − x+

k

)η 1 − λ̃

4x+
j x−

k

1 − λ̃

4x−
j x+

k

, (A.1)

where η = −1, 0, 1 for the SL(2), SU(1|1) and SU(2) sectors. Here

x±
k = e± i

2 pk

4 sin pk

2

√
1 + 4λ̃ sin2

pk

2
, λ̃ ≡ λ

(2π)2
. (A.2)

An important property of the S-matrix in (A.1) is that it can be written as

Sη(pj , pk) = Aη(pj , pk) + Bη(pj , pk)

Aη(pj , pk) − Bη(pj , pk)
= 1 + Bη(pj , pk)/Aη(pj , pk)

1 − Bη(pj , pk)/Aη(pj , pk)
(A.3)

where Bη is purely imaginary and

Aη(pj , pk) = 1

2

[
(x+

j − x−
k )η

(
1 − λ̃

4x+
j x−

k

)
+ (x−

j − x+
k )η

(
1 − λ̃

4x−
j x+

k

)]

Bη(pj , pk) = 1

2

[(
x+

j − x−
k

)η (
1 − λ̃

4x+
j x−

k

)
− (

x−
j − x+

k

)η (
1 − λ̃

4x−
j x+

k

)]
.

(A.4)

A.2. Four-point vertex from S-matrix

Given a field theory of type (2.12), it is a simple exercise to find its tree-level S-matrix. It
is related to the four-point vertex V(p, p′; k, k′) in (5.3) by multiplication by the kinematic
factor (3.7)

Stree = V(p, p′; k, k′)
λ̃−1e(p)e(p′)

p′e(p) − pe(p′)
. (A.5)

Here we are free to use the on-shell condition for the momenta p, p′, k and k′ as well as
momentum conservation. Making use of this freedom (which, as discussed above, implies
that p, p′ equals k, k′ or k′, k) it is always possible to put the vertex in the form

V(p, p′; k, k′) = 1
2 [V(p, p′) + V(k, k′)]. (A.6)

This freedom brings in the issue of reconstructing the off-shell vertex V from the knowledge
of the tree-level S-matrix. This issue is particularly relevant for rank-1 fermion sector. The
S-matrix depends on two incoming momenta and as such the vertex will have the structure
(A.6). But then it may seem impossible to write a non-trivial Lagrangian L for two
anticommuting fields ψ, ψ̄ since (A.6) implies that the corresponding terms in L will contain
either ψ̄2 = 0 or ψ2 = 0. This is, however, an illusion stemming from a naive use of free
equations of motion as well as momentum conservation.
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To identify a way to undo the use of momentum conservation we are to take into account
the statistics of the scattered particles. In particular, the vertex should be either symmetric
or antisymmetric depending whether the scattered particles are bosons or fermions34. Below
we will use the momentum conservation constraint on the vertex which is extracted from the
scattering matrix in such a way that the required symmetry properties are manifest.

Up to divergent terms that we discard, the 1-loop contribution to the resulting field-theory
S-matrix is (cf (5.18)

S1-loop = I1(p, p′)
λ̃−1e(p)e(p′)

p′e(p) − pe(p′)
, (A.7)

I1(p, p′) = (−1)[f ][V(p, p′)]2 λ̃−1e(p)e(p′)
p′e(p) − pe(p′)

, Stree = I1(p, p′)
V(p, p′)

. (A.8)

Then the all-loop S-matrix is

Sall-loop = 1 + 1
2Stree

1 − 1
2Stree

. (A.9)

By comparing this with the S-matrix extracted from the Bethe equations (A.3) it follows quite
generally that

Stree = 2
Bη(p, p′)
Aη(p, p′)

, (A.10)

V(p, p′) = 2λ̃
p′e(p) − pe(p′)

e(p)e(p′)
Bη(p, p′)
Aη(p, p′)

= 2λ̃
p′e(p) − pe(p′)

e(p)e(p′)

(x+
1 − x−

2 )η
(
1 − λ̃

4x+
1 x−

2

)− (x−
1 − x+

2 )η
(
1 − λ̃

4x−
1 x+

2

)
(x+

1 − x−
2 )η
(
1 − λ̃

4x+
1 x−

2

)
+ (x−

1 − x+
2 )η
(
1 − λ̃

4x−
1 x+

2

) (A.11)

where

x±
1 = x±(p), x±

2 = x±(p′).

A.3. 4-vertex in the SU(1|1) sector

As explained in the SU(2) case, to compare with the field-theory S-matrix we need to take a
specific low-momentum limit in the Bethe ansatz S-matrix, in which p → 0 and one keeps
only the leading term in p at each order in λ. This amounts to the replacement:

x±(p) → e(p)

2p
, e(p) =

√
1 + λ̃p2. (A.12)

Then

(Ssu(1|1))tree = 2

(
1 − λ̃

4x+
1 x−

2

)− (
1 − λ̃

4x−
1 x+

2

)
(
1 − λ̃

4x+
1 x−

2

)
+
(
1 − λ̃

4x−
1 x+

2

)
→ (S̃su(1|1))tree = i

2
(p − p′)

[
1 − p − p′

pe(p′) − p′e(p)

]
34 This is implicitly taken into account by the fact that the relative sign between the two terms in δ+ in (3.5) is positive
for bosons and negative for fermions (see, e.g., [8]).
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= iλ̃

4
pp′(p − p′) − iλ̃2

16
pp′(p3 − 2p2p′ + 2pp′2 − p′3)

+
iλ̃3

32
pp′(p5 − 2p4p′ + 2p3p′2 − 2p2p′3 + 2pp′4 − p′5)

− 5iλ̃4

256
pp′(p7 − 2p6p′ + 2p5p′2 − 2p4p′3

+ 2p3p′4 − 2p2p′5 + 2pp′6 − p′7) + . . . . (A.13)

Thus, after dividing by the kinematic factor,

Vsu(1|1)(p, p′) = i

2
λ̃(p − p′)

[
pe(p′) − p′e(p)

e(p)e(p′)
− p − p′

e(p)e(p′)

]
(A.14)

i.e.

Vsu(1|1)(p, p′) = − iλ̃2

4
pp′(p − p′)2 +

iλ̃3

16
pp′(p − p′)2(3p2 + pp′ + 3p′3)

− iλ̃4

32
pp′(p − p′)2(5p4 + 2p3p′ + 5p2p′2 + 2pp′3 + 5p′5)

+
iλ̃5

256
pp′(p − p′)2(35p6 + 15p5p′ + 35p4p′2

+ 17p3p′3 + 35p2p′4 + 15pp′5 + 35p′6) + · · · . (A.15)

Note that this vertex starts with the 2-loop order λ2 term, in agreement with the fact that the
leading-order LL action in the SU(1|1) sector is free [4, 44–46, 52].

Clearly, the vertex (A.14) does not have the symmetry properties necessary to arise from
a fermionic action, as it is symmetric under p ↔ p′. The required antisymmetry is restored
by using the momentum conservation to express the overall factor (p − p′) in terms of the
outgoing momenta:

Ṽsu(1|1)(k, k′;p, p′) = i

2
λ̃(k − k′)

[
pe(p′) − p′e(p)

e(p)e(p′)
− p − p′

e(p)e(p′)

]

= − iλ̃2

4
pp′(p − p′)(k − k′) + O(λ̄3). (A.16)

This vertex allows us to determine the leading part in the quartic interaction term of the
resulting fermionic coherent state action corresponding to the BDS-type Bethe ansatz in the
SU(1|1) sector (cf (2.12) and (6.2)

S =
∫

dt

∫ J

0
dx
{−ψ̄

[
i∂t + (

√
1 − λ̃∂2

x − 1)
]
ψ − V (ψ, ψ̄)

}
, (A.17)

V = V4 + V6 + · · · , V4 = λ̄2

4
(ψ̄ψ̄ ′ψ ′ψ ′′ + h.c.) + O(λ̄3), (A.18)

where ψ ′ = ∂xψ and ψ is a complex anticommuting field35. The exact form of V4 that follows
from (A.16) is (cf (5.6)

V4 = λ̄

8
ψ̄∂xψ̄

[
ψ

∂x√
1 − λ̄∂2

x

ψ −
(

1√
1 − λ̄∂2

x

ψ

)(
∂x√

1 − λ̄∂2
x

ψ

)]
+ h.c. (A.19)

35 As discussed in [46], to find a similar quadratic term on the string-theory side where one starts with a relativistic
massive fermion action one is to solve for one of the two fermionic components in terms of the other.
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This interaction term was constructed using the BDS-type S-matrix36. Including a proper
‘string’ phase in the S-matrix one should be able to reconstruct the effective action that should
be more closely related to string theory37.

A.4. 4-vertex in the SL(2) sector

Similarly, in the SL(2) sector one finds for the low momentum limit of the BDS-type S-matrix
(using (A.10), (A.12), etc)

(Ssl(2))tree = 2

(
x+

1 − x−
2

)−1(
1 − λ̃

4x+
1 x−

2

)− (
x−

1 − x+
2

)−1(
1 − λ̃

4x−
1 x+

2

)
(
x+

1 − x−
2

)−1(
1 − λ̃

4x+
1 x−

2

)
+
(
x−

1 − x+
2

)−1(
1 − λ̃

4x+
2 x−

1

)
→ (S̃sl(2))tree = i

[
(p − p′) − p2 + p′2

pe(p′) − p′e(p)

]

= 2ipp′

p − p′ +
iλ̃

2

pp′

p − p′ (p
2 + p′2)

− iλ̃2

8

pp′

p − p′ (p
4 − p3p′ + 2p2p′2 − 2pp′3 + p′4)

+
iλ̃3

16

pp′

p − p′ (p
6 − p5p′ + 2p4p′2 − 2p3p′3 + 2p2p′4 − pp′5 + p′6) + · · · .

(A.20)

Multiplying by the kinematic factor, the exact expression for the vertex summing up the
leading small momentum terms at each order in λ expansion is (cf (5.2) and (A.14)

Vsl(2)(p, p′) = iλ̃

[
(p − p′)

pe(p′) − p′e(p)

e(p)e(p′)
− p2 + p′2

e(p)e(p′)

]
, (A.21)

i.e.

Vsl(2)(p, p′) = −2iλ̃pp′ +
iλ̃2

2
pp′(p2 + p′2) − iλ̃3

8
pp′(3p4 + 5p3p′ + 5pp′3 + 3p′4)

+
iλ̃4

16
pp′(5p6 + 8p5p′ + 6p3p′3 + 8pp′5 + 5p′6) + · · · . (A.22)

The leading-order LL action in the SL(2) sector (depending on a pseudo-unit vector
parametrizing AdS3) was constructed in [54, 55] (see also [57]); the higher order corrections
to the spin-chain LL action were not computed before (corrections to the string LL action
can be found from the expressions in [56]). The S-matrix approach avoids the problem of
complicated explicit form of the dilatation operator in this sector and gives one an efficient
method of reconstructing the higher order terms in the effective action. We thus get the
following quartic term in the SL(2) effective action (cf (5.6) or (A.19)

V4 = λ̄

4
φ∗φ∗

[(
1√

1 − λ̄∂2
x

φ

)
∂2
x√

1 − λ̄∂2
x

φ + ∂xφ
∂x√

1 − λ̄∂2
x

φ − φ
∂2
x√

1 − λ̄∂2
x

φ

]
+ c.c.

(A.23)

As was observed in [4, 5], the BDS S-matrices in the three sectors are formally related by
Ssu(2)Ssl(2) = [Ssu(1|1)]2, implying that

36 It is of course different from the relativistic model of [53] (obtained by a particular truncation of the classical string
action of [22]) for which the quantum S-matrix was computed in [8].
37 Let us note again that there is a freedom of off-shell extension that allows us, e.g., to write the denominators here
in a more symmetric form, as suggested by the string-theory considerations of section 7 (cf (7.9).



13166 R Roiban et al

(Ssu(2))tree + (Ssl(2))tree = 2(Ssu(1|1))tree, (A.24)
Vsu(2) + Vsl(2) = 2Vsu(1|1), (A.25)

which provides a simple check on the expressions in (5.2), (A.21) and (A.14). Relation (A.24)
is true also after the inclusion of the AFS phase contribution (4.17), which is the same for all
sectors.

A.5. Deformation of the BDS S-matrix and the vertex

Let us now comment on the impact of the extra phase that relates the BDS S-matrix Sg and
the S-matrix Ss (called, respectively, S1 and S in (1.2) entering the string Bethe equations on
the structure of the resulting field-theory vertex. If we start with

Ss(p, p′) = Sg(p, p′)[σ(p, p′)]2, σ 2 = eiθ = a + b

a − b
, (A.26)

where B in (A.3) and b in (A.26) are assumed to be purely imaginary, then it is not hard to
trace this deformation through the steps made above and find the deformed (string)-theory
analogues of the quantities A and B in (A.4)

Ss = Sgσ
2 = Ag − Bg

Ag + Bg

a + b

a − b

= (Aga − Bgb) − (Agb − Bga)

(Aga − Bgb) + (Agb − Bga)
≡ As − Bs

As + Bs

(A.27)

We can then reconstruct the four-point vertex (tree S-matrix) for the ‘string’ LL model:

Vs ≡ Bs

As

= Agb − Bga

Aga − Bgb
= vθ − Vg

1 − Vgvθ

, Vg = Bg

Ag

, vθ = b

a
= tan

θ

2
, (A.28)

where θ is the dressing phase relating the gauge and string theory Bethe ansätze. To relate this
to the discussion in section 4 one should apply the small momentum expansion to simplify the
entries in (A.27).

Appendix B. Momentum expansion of the leading strong coupling correction
to the AFS phase

Here we shall present some details of the small momentum expansion of the leading quantum
correction to the AFS phase which we used in section 4 and show that it modifies the small
momentum expansion in (4.19) by terms nonanalytic in λ̄ leading to further deviations from
(4.24).

The dressing phase in (1.2), (4.11) is defined by its large λ̄ expansion

θ = θAFS + θHL + O
(

1

(
√

λ̄)2

)
, (B.1)

where θHL is the first correction in (4.11), (4.12) given by [19]

θHL =
∞∑

r=2

∞∑
s=r+1

ars

(
λ̄

4

) r−1
2 + s−1

2

[qs(p)qr(p
′) − qs(p

′)qr(p)] (B.2)

with ars = 4
π

(r−1)(s−1)

(r−1)2−(s−1)2 for odd r + s and 0 otherwise. Using the small momentum limit
(4.15) of the charge densities qr , it is easy to see that θHL may be written as

θHL = pp′g(p)g(p′)
∞∑

r=2

∞∑
s=r+1

ars

[
1

g(p)rg(p′)s
− 1

g(p′)rg(p)s

]
, (B.3)



Asymptotic Bethe ansatz S-matrix and Landau–Lifshitz-type effective 2d actions 13167

where

g(p) =
√

λ̄p

e(p) − 1

is fixed in the small momentum limit. After changing the summation index s to s = 2n + r + 1
to take into account the vanishing of ars for even r + s, the double sum in (B.3) equals the
second mixed derivative of a double sum computed in [20]:

χ1(x, y) =
∞∑

r=2

∞∑
n=0

ar,2n+r+1

(r − 1)(2n + r)

1

xr−1y2n+r

= 2

π

[
log

y − 1

y + 1
log

x − 1
y

x − y

+ Li2

√
y − 1√

y√
y − √

x
− Li2

√
y + 1√

y√
y − √

x
+ Li2

√
y − 1√

y√
y +

√
x

− Li2

√
y + 1√

y√
y +

√
x

]
. (B.4)

Some algebra then leads to

θHL = 2pp′g(p)g(p′)
π(g(p) − g(p′))(1 − g(p)g(p′))

×
[

1 − 1

2

(1 − g(p)g(p′))2 + (g(p) − g(p′))2

(g(p) − g(p′))(1 − g(p)g(p′))
ln

(1 + g(p))(1 − g(p′))
(1 − g(p))(1 + g(p′))

]
(B.5)

As expected, in the small momentum limit p → 0 and λp2 = fixed, the correction θHL to θAFS

scales as p2; however, its dependence on λ̄ is nonanalytic:

θHL ∝ p2f (
√

λ̄p). (B.6)

Including this additional phase in the (4.19) will modify its low momentum expansion by
terms nonanalytic λ̄ starting with

δS̃AFS = − i

3π
λ̄3/2p2p′2(p − p′) + · · · . (B.7)

This implies further deviations from the naive expectation (4.24) (expected by analogy with
the BDS case) for the low-energy limit of the scattering matrix of the ‘string’ ansatz. It is
possible in principle that this nonanalytic dependence on λ̄ may change once all higher order
corrections to θ are resummed. This may be expected on the grounds that the dressing phase
should have an analytic expansion at small λ̄ if it is eventually to agree with perturbative gauge
theory.
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